Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop to smell the flowers – but do it before they’re pollinated

21.11.2003


A recent Purdue University study has uncovered the processes responsible for shutting down scent production in certain flowers once they’ve been pollinated – a finding that may help the horticulture industry enhance floral scent.


Once flowers like these snapdragons have been pollinated, the amount of scent production is reduced, according to a Purdue University study. Researcher Florence Negre, smelling snapdragons in the Purdue greenhouses, participated in the study published this month in The Plant Cell. (Purdue Agricultural Communications photo/Tom Campbell)



Natalia Dudareva, associate professor of horticulture, and her colleagues have recently identified the molecular mechanisms that cause petunias and snapdragons to decrease scent production after they’ve been visited by pollinators such as bees or moths. The researchers also proved that fertilization, the reproductive process that follows pollination, triggers a decline in scent production. In addition, their research has identified a new role for the plant hormone ethylene.

The study will appear in the December issue of The Plant Cell and is published online in advance of print today (Thursday, 11/20) at The Plant Cell Preview.


"Until now, nothing has been known about the molecular mechanisms that shut down scent production after pollination," Dudareva said. "This study gives us a better understanding of how plants regulate floral scent production and how to improve floral scent in unscented flowers."

Over years of breeding for characteristics such as longevity, color and flower size, many commercially-produced flowers have lost their scent.

"It makes sense. To increase shelf life, a flower needs to save energy, and maybe the trade-off was that these flowers don’t expend energy on producing scent anymore," Dudareva said.

To her surprise, she found that while petunias and snapdragons rely on some of the same compounds and processes to produce scent, these flowers regulate their post-pollination scent production in different ways at the molecular level.

In all flowers, a variety of substances known as volatile compounds contribute to floral scent, Dudareva said. A volatile compound called methylbenzoate is one of the most abundant scent compounds in many flowers, including petunias and snapdragons.

Dudareva previously showed that both petunias and snapdragons produce methylbenzoate through a process called methylation. During methylation, an enzyme adds a small molecular unit, called a methyl group, to a compound called benzoic acid, found in the petals. Two different, but related, enzymes called BAMT in snapdragons and BSMT in petunias are responsible for the methylation reaction that produces methylbenzoate and a bouquet’s bouquet.

In the current study, Dudareva and her colleagues found that in petunias the plant hormone ethylene, which is produced after pollination, suppresses activity of the gene that triggers the creation of BSMT. Without BSMT, the flower cannot produce the methylbenzoate responsible for its scent.

"In this study we found that genes that regulate scent production are sensitive to ethylene," Dudareva said. "This was entirely unknown and was a big surprise for us."

Ethylene plays a role in many plant development processes, including fruit maturation, leaf drop and various stress responses, but has not previously been shown to play a role in regulating scent.

Snapdragons, Dudareva found, are somewhat sensitive to ethylene, but not to the extent of petunias. While ethylene essentially shuts down scent emission in petunias after pollination, the hormone does not elicit this effect in snapdragons.

Instead, scent emission in snapdragons is regulated by a change in the ratio of two compounds produced in snapdragon flowers, Dudareva said. One of these compounds, called SAM, donates the methyl groups used in the methylbenzoate-producing reaction. The other compound, called SAH, is produced as a result of the methylation reaction. Taken together, the relative amounts of these two compounds are called the "methylation index."

Changes in this index contribute to the decline in scent emission after pollination in snapdragons, Dudareva said.

"It’s a feedback loop, and both compounds compete to react with the BAMT enzyme," she said.

Disrupting BAMT activity ultimately decreases production of the scent compound, she said.

While petunias and snapdragons rely on different mechanisms to suppress or decrease scent emission, Dudareva has shown that in both types of flowers fertilization somehow provides a signal to plants, telling them to stop producing scent.

"What we found very interesting is that fertilization, not just pollination, gives a signal to downregulate floral scent," she said. "For two days after pollination, scent does not go down in snapdragons."

When it lands on a flower, pollen produces a structure called a pollen tube. This tube burrows into the flower and makes fertilization possible by giving the pollen access to the flower’s ovary.

"Production of scent is an expensive process from an energy point of view, so the question was, why do flowers continue to produce floral scent if they’re already pollinated? We found that in snapdragons it takes about 48 hours for the pollen tubes to reach the ovary, and this is what shuts down floral scent," she said.

Petunias also show a delay between pollination and decreased scent production. As is the case with snapdragons, the delay in petunias also matches the length of time it takes for pollen tubes to reach the ovaries, Dudareva said.

This tight coupling between pollination and decreased scent emission makes sense from an evolutionary point of view, she said.

"I think plants want to be sure that they are fertilized before they stop producing scent," Dudareva said. "If they stop producing scent, they won’t attract any more pollinators. If the first pollen to reach the flower doesn’t reach the ovary, the flower will need to attract more pollinators or it won’t produce fruit."

Dudareva suggests that differences in the floral architecture of petunias and snapdragons may account for the different mechanisms these plants use to shut down scent production, but she has not yet investigated this topic experimentally.

"The differences could have to do with floral arrangement on the different types of plants, but it’s just a hypothesis," she said.

Collaborating on the study were Florence Negre, Christine Kish and Jennifer Boatright of Purdue University; Beverly Underwood, Kenichi Shibuya and David G. Clark of the University of Florida; and Conrad Wagner of Vanderbilt University.

The National Science Foundation, the Fred Gloeckner Foundation Inc, the American Floral Endowment, the USDA Floriculture and Nursery Research Initiative, and the Florida Agriculture Experimental Station funded this research.


Writer: Jennifer Cutraro, (765) 496-2050, jcutraro@purdue.edu
Source: Natalia Dudareva, (765) 494-1325, dudareva@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Jennifer Cutraro | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031120.Dudareva.scent.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>