Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will speed genome sequencing

21.11.2003


Almost 150 different genomes have been sequenced to date, including the human genome. But sequencing needs are growing faster than ever: In March 2003, the Bush administration announced it will spend $1 billion over five years to increase forensic analysis of DNA, including a backlog of up to 300,000 samples. And the success of the growing field of genomic medicine, which promises to deliver better therapies and diagnostics, depends on faster sequencing technology.



This fall, researchers at Whitehead Institute will test new technology that could aid these and other endeavors. The BioMEMS 768 Sequencer can sequence the entire human genome in only one year, processing up to 7 million DNA letters a day, about seven times faster than its nearest rival. Scientists began working on the project in 1999 with a $7 million National Human Genome Research Institute grant. The technology eventually will help scientists quickly determine the exact genetic sequence of the DNA of many different organisms, and could lead to faster forensic analysis of DNA gathered in criminal cases.

The heart of the new BioMEMs machine is a large glass chip etched with tiny microchannels called "lanes." It tests 384 lanes of DNA at a time, four times more than existing capillary sequencers. Each lane can accommodate longer strands of DNA: about 850 bases (the nucleic acids found in DNA, abbreviated by the letters A, C, T or G), compared to the current 550 bases per lane.


It takes about 45 minutes to read the DNA from one of the BioMEMS’ 768 lanes. The machine has two chips; one is prepared as the other is sequenced, so that the machine is sequencing at all times. The new sequencer saves not just capital costs, the developers say, but day-to-day expenses as well.

"It’s not only the cost of the machine, but the cost of the materials it uses," says Brian McKenna, a senior software engineer at Whitehead Institute. The goal, he says, is to use the same amount of consumables -- liquid, chemicals, and other materials used to prepare the DNA -- as existing sequencing machines. BioMEMS also uses a DNA loading process that eventually will need only 1 percent of a typical DNA sample.

While developed at Whitehead, the machine is being commercialized by network biosystems, a company in Woburn, Mass., started in 2001 by Whitehead Member Paul Matsudaira, BioMEMS Labs Director Dan Ehrlich and research scientist Lance Koutny. Shimadzu Biotech in Japan will manufacture the sequencer.

David Appell | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>