Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will speed genome sequencing

21.11.2003


Almost 150 different genomes have been sequenced to date, including the human genome. But sequencing needs are growing faster than ever: In March 2003, the Bush administration announced it will spend $1 billion over five years to increase forensic analysis of DNA, including a backlog of up to 300,000 samples. And the success of the growing field of genomic medicine, which promises to deliver better therapies and diagnostics, depends on faster sequencing technology.



This fall, researchers at Whitehead Institute will test new technology that could aid these and other endeavors. The BioMEMS 768 Sequencer can sequence the entire human genome in only one year, processing up to 7 million DNA letters a day, about seven times faster than its nearest rival. Scientists began working on the project in 1999 with a $7 million National Human Genome Research Institute grant. The technology eventually will help scientists quickly determine the exact genetic sequence of the DNA of many different organisms, and could lead to faster forensic analysis of DNA gathered in criminal cases.

The heart of the new BioMEMs machine is a large glass chip etched with tiny microchannels called "lanes." It tests 384 lanes of DNA at a time, four times more than existing capillary sequencers. Each lane can accommodate longer strands of DNA: about 850 bases (the nucleic acids found in DNA, abbreviated by the letters A, C, T or G), compared to the current 550 bases per lane.


It takes about 45 minutes to read the DNA from one of the BioMEMS’ 768 lanes. The machine has two chips; one is prepared as the other is sequenced, so that the machine is sequencing at all times. The new sequencer saves not just capital costs, the developers say, but day-to-day expenses as well.

"It’s not only the cost of the machine, but the cost of the materials it uses," says Brian McKenna, a senior software engineer at Whitehead Institute. The goal, he says, is to use the same amount of consumables -- liquid, chemicals, and other materials used to prepare the DNA -- as existing sequencing machines. BioMEMS also uses a DNA loading process that eventually will need only 1 percent of a typical DNA sample.

While developed at Whitehead, the machine is being commercialized by network biosystems, a company in Woburn, Mass., started in 2001 by Whitehead Member Paul Matsudaira, BioMEMS Labs Director Dan Ehrlich and research scientist Lance Koutny. Shimadzu Biotech in Japan will manufacture the sequencer.

David Appell | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>