Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will speed genome sequencing

21.11.2003


Almost 150 different genomes have been sequenced to date, including the human genome. But sequencing needs are growing faster than ever: In March 2003, the Bush administration announced it will spend $1 billion over five years to increase forensic analysis of DNA, including a backlog of up to 300,000 samples. And the success of the growing field of genomic medicine, which promises to deliver better therapies and diagnostics, depends on faster sequencing technology.



This fall, researchers at Whitehead Institute will test new technology that could aid these and other endeavors. The BioMEMS 768 Sequencer can sequence the entire human genome in only one year, processing up to 7 million DNA letters a day, about seven times faster than its nearest rival. Scientists began working on the project in 1999 with a $7 million National Human Genome Research Institute grant. The technology eventually will help scientists quickly determine the exact genetic sequence of the DNA of many different organisms, and could lead to faster forensic analysis of DNA gathered in criminal cases.

The heart of the new BioMEMs machine is a large glass chip etched with tiny microchannels called "lanes." It tests 384 lanes of DNA at a time, four times more than existing capillary sequencers. Each lane can accommodate longer strands of DNA: about 850 bases (the nucleic acids found in DNA, abbreviated by the letters A, C, T or G), compared to the current 550 bases per lane.


It takes about 45 minutes to read the DNA from one of the BioMEMS’ 768 lanes. The machine has two chips; one is prepared as the other is sequenced, so that the machine is sequencing at all times. The new sequencer saves not just capital costs, the developers say, but day-to-day expenses as well.

"It’s not only the cost of the machine, but the cost of the materials it uses," says Brian McKenna, a senior software engineer at Whitehead Institute. The goal, he says, is to use the same amount of consumables -- liquid, chemicals, and other materials used to prepare the DNA -- as existing sequencing machines. BioMEMS also uses a DNA loading process that eventually will need only 1 percent of a typical DNA sample.

While developed at Whitehead, the machine is being commercialized by network biosystems, a company in Woburn, Mass., started in 2001 by Whitehead Member Paul Matsudaira, BioMEMS Labs Director Dan Ehrlich and research scientist Lance Koutny. Shimadzu Biotech in Japan will manufacture the sequencer.

David Appell | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>