Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers measure the ’heat of life,’ offering clues to DNA damage


A Rutgers-led team has produced the first ever measurement of the "heat of life" – the energies involved in DNA replication and synthesis. The researchers’ findings have opened the door to a better understanding of the origins of replication errors that can result in genetic mutations and serious illness. This is crucial knowledge for the development of medical diagnostics and treatments of genetic disorders.

"Our measurements represent the first direct determination of the energies and their transformations in this most fundamental process in biological chemistry," said principal investigator Kenneth J. Breslauer, Linus C. Pauling Professor, and dean and director of the Division of Life Sciences, Rutgers, The State University of New Jersey.

Breslauer explained that the measurements can be used to construct a virtual landscape that traces the precise energy differences between correct and incorrect DNA synthesis. The differential energy signatures signal the presence of DNA damage, potentially repairable by protein systems inside the cell or specifically designed drugs administered from the outside, or both.

"Knowing the nature and magnitude of the forces involved in correct and incorrect DNA synthesis is essential for rationally designing strategies for intervention, including new drug therapies," said Breslauer. "This knowledge can position us to begin to intervene, enabling us to halt incorrect synthesis through the introduction of highly targeted external agents.

"The only reason we are not a bunch of mutants walking around is that we have exquisite repair systems that can recognize these damaged sites and repair them before they replicate. And, if they do escape initial repair and replicate, we have additional repair systems that find the damage that was replicated and delete it," said Breslauer, noting the contributions of Rutgers’ recent National Medal of Science winner Evelyn Witkin to an understanding of these repair systems.

On rare occasions, both systems fail and when they do, a damaged piece of DNA can be carried on to the next generation. This might result in a particular protein not being able to be made in the offspring or even in the parent. Or, it might result in the improper regulation of a gene that controls cell growth, thereby precipitating uncontrolled growth and the formation of tumors.

DNA reproduces by acting as a template for copying itself, using ingredients available within the cell. Replication, the same as synthesis in this case, is required for any organism to develop, grow and pass on its genetic information. DNA damage is fairly common, a byproduct of our environment and normal metabolism.

In a paper appearing in the Proceedings of the National Academy of Sciences, Breslauer and his colleagues describe their use of a novel combination of technology and chemical biology. They employed the world’s most sensitive thermal detection system, accurate to a millionth of a calorie, to measure reaction heats in a uniquely formulated "DNA soup."

"The degree to which this constitutes a breakthrough will be determined by how researchers here and elsewhere build upon it," Breslauer continued. "It is a foundation that is a necessary, but not sufficient, step in the direction of being able to understand and to regulate DNA synthesis, not only in the lab, but in living organisms."

The Human Genome Project and subsequent revelations provided by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) have taught us a great deal about structure in biological systems. Breslauer points out, however, that there is still much to be learned about function and overall driving forces.

He makes the analogy of an automobile, in which knowing what all its component parts look like – the engine, the transmission, the brakes, etc. – still won’t allow you to fix the car if it is not running properly, unless you know the function of each part and the energy transfer between parts.

"These energy studies are essential to bridge the gap between structure and function, a bridge that is needed for our understanding of how biological processes operate and are controlled," Breslauer said.

Joseph Blumberg | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>