Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find new form of hormone that helps songbirds reproduce


Scientists have known for many years that auditory cues such as song can influence hormone release and the growth of gonads in songbirds, but how the brain picks out specific sounds, interprets them correctly and translates them into hormonal and behavioral signals has remained a mystery. New evidence suggests a third form of a key reproduction hormone could be a link between song and enhanced procreation in songbirds.

It’s a long-held tenet of avian biology that songbirds have just two types of a key reproduction hormone, gonadotropin-releasing hormone (GnRH), and only one actually triggers a seasonal "puberty" each spring in preparation for reproduction. But the new research shows a third form of the hormone, called lamprey GnRH-III-like hormone because it was first identified in lampreys, is also present in songbird brains.

The work by scientists from the University of Washington and the University of New Hampshire shows GnRH-III can trigger the release of luteinizing hormone from the pituitary gland and influence gonad growth, something only one of the other forms of GnRH does under normal conditions.

"This is interesting because many birds breed seasonally, and they time their breeding for favorable conditions in the spring," said George Bentley, a UW post-doctoral researcher in biology.

Bentley is lead author on a paper detailing the work that will be published in the December-January edition of the journal Brain, Behavior and Evolution. Co-authors are John Wingfield, a UW biology professor; Ignacio Moore, a UW post-doctoral researcher in biology; and Stacia Sower, a professor of biochemistry and molecular biology at the University of New Hampshire. The research also was presented earlier this month at the Society for Neuroscience annual meeting in New Orleans.

Like one other form of the hormone, GnRH-III is found in the hypothalamus, where it is released to the pituitary gland, which then triggers changes in the reproductive system, Bentley said. But unlike the other forms of the hormone, GnRH-III also is found in parts of the brain that initiate and process auditory cues.

"In some species, if a female bird hears a male of the species sing, her ovaries grow faster and she will lay more eggs," Bentley said.

In addition, tape-recorded songs from a male can trigger a rapid increase in testosterone of another male defending his territory, a phenomenon Wingfield has studied for many years.

In either case, the brain detects an external cue – birdsong – that triggers a physical or behavioral response, possibly both. Just how the responses are transmitted through the nervous system is unknown, Wingfield said. But finding a third form of GnRH in areas of the brain that produce and process birdsong holds the potential for ultimately identifying how cues such as song can be directly translated into hormone output that affects reproduction.

It could be the first step in showing that the hormone is released directly into the bloodstream from the song centers of the brain, rather than going through the hypothalamus, Wingfield said.

"We’ve never had a link like this for the GnRH-type molecule in these brain areas that produce and process birdsong," he said. "The fact that it’s there is unique to higher vertebrates."

The researchers note the importance environment can play in reproductive responses. For instance, previous studies have shown testosterone levels in the saliva of sports fans increases when their teams win, and it decreases when their teams lose. Likewise, the widely recognized home-field advantage in sports has recently been correlated to a higher salivary testosterone level in home-team players than in visitors.

But at a time when people are increasingly concerned about environmental changes, the researchers say, there is still very little information about how organisms respond to changes in various triggers – temperature change, for example – in their environments. The scientists plan further research with GnRH-III to try to determine how the brain interprets seemingly fleeting and subtle environmental cues such as temperature fluctuation, rivalry and vocalization. The response to these cues can have a profound impact on reproduction success, Bentley said.

For more information, contact Bentley at 206-543-7623 or, or Wingfield at 206-543-7622 or

Vince Stricherz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>