Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new form of hormone that helps songbirds reproduce

18.11.2003


Scientists have known for many years that auditory cues such as song can influence hormone release and the growth of gonads in songbirds, but how the brain picks out specific sounds, interprets them correctly and translates them into hormonal and behavioral signals has remained a mystery. New evidence suggests a third form of a key reproduction hormone could be a link between song and enhanced procreation in songbirds.



It’s a long-held tenet of avian biology that songbirds have just two types of a key reproduction hormone, gonadotropin-releasing hormone (GnRH), and only one actually triggers a seasonal "puberty" each spring in preparation for reproduction. But the new research shows a third form of the hormone, called lamprey GnRH-III-like hormone because it was first identified in lampreys, is also present in songbird brains.

The work by scientists from the University of Washington and the University of New Hampshire shows GnRH-III can trigger the release of luteinizing hormone from the pituitary gland and influence gonad growth, something only one of the other forms of GnRH does under normal conditions.


"This is interesting because many birds breed seasonally, and they time their breeding for favorable conditions in the spring," said George Bentley, a UW post-doctoral researcher in biology.

Bentley is lead author on a paper detailing the work that will be published in the December-January edition of the journal Brain, Behavior and Evolution. Co-authors are John Wingfield, a UW biology professor; Ignacio Moore, a UW post-doctoral researcher in biology; and Stacia Sower, a professor of biochemistry and molecular biology at the University of New Hampshire. The research also was presented earlier this month at the Society for Neuroscience annual meeting in New Orleans.

Like one other form of the hormone, GnRH-III is found in the hypothalamus, where it is released to the pituitary gland, which then triggers changes in the reproductive system, Bentley said. But unlike the other forms of the hormone, GnRH-III also is found in parts of the brain that initiate and process auditory cues.

"In some species, if a female bird hears a male of the species sing, her ovaries grow faster and she will lay more eggs," Bentley said.

In addition, tape-recorded songs from a male can trigger a rapid increase in testosterone of another male defending his territory, a phenomenon Wingfield has studied for many years.

In either case, the brain detects an external cue – birdsong – that triggers a physical or behavioral response, possibly both. Just how the responses are transmitted through the nervous system is unknown, Wingfield said. But finding a third form of GnRH in areas of the brain that produce and process birdsong holds the potential for ultimately identifying how cues such as song can be directly translated into hormone output that affects reproduction.

It could be the first step in showing that the hormone is released directly into the bloodstream from the song centers of the brain, rather than going through the hypothalamus, Wingfield said.

"We’ve never had a link like this for the GnRH-type molecule in these brain areas that produce and process birdsong," he said. "The fact that it’s there is unique to higher vertebrates."

The researchers note the importance environment can play in reproductive responses. For instance, previous studies have shown testosterone levels in the saliva of sports fans increases when their teams win, and it decreases when their teams lose. Likewise, the widely recognized home-field advantage in sports has recently been correlated to a higher salivary testosterone level in home-team players than in visitors.

But at a time when people are increasingly concerned about environmental changes, the researchers say, there is still very little information about how organisms respond to changes in various triggers – temperature change, for example – in their environments. The scientists plan further research with GnRH-III to try to determine how the brain interprets seemingly fleeting and subtle environmental cues such as temperature fluctuation, rivalry and vocalization. The response to these cues can have a profound impact on reproduction success, Bentley said.


For more information, contact Bentley at 206-543-7623 or gb7@u.washington.edu, or Wingfield at 206-543-7622 or jwingfie@u.washington.edu.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>