Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole-rats bare pain relief clues

17.11.2003


Credit: Thomas Park of UIC


East African naked mole-rats, the only known cold-blooded mammal, have shown a rather heated response in lab tests that may have important implications for treating chronic pain in humans.

The blind, furless creatures that live underground in colonies lack a body chemical called Substance P, a neurotransmitter normally in the skin that sends pain signals to the central nervous system. The rats feel no immediate pain when cut, scraped or subjected to heat stimuli. They only feel some aches. But when the rats get a shot of Substance P, pain signaling resumes working as in other mammals.

"It was a complete surprise when we discovered that the skin of naked mole-rats is missing one of the most basic chemicals that’s found in the skin of all other mammals," said Thomas Park, associate professor of biological sciences at the University of Illinois at Chicago and the principal investigator in the research project.



Co-investigators include Christopher Comer, professor of biological sciences, Ying Lu, assistant professor of anesthesiology and Charles Laurito, professor of anesthesiology -- all at UIC -- along with pharmacologists Frank Rice of the Albany Medical College in Albany, N.Y. and Steven Wilson, of the University of South Carolina School of Medicine.

The findings were reported in a presentation by Lu Nov.8 in New Orleans at the annual meeting of the Society for Neuroscience.

Some medical researchers believe an excess of Substance P causes the human condition fibromyalgia, where patients suffer from chronic pain in soft fibrous body tissue such as muscles, ligaments and tendons. Theoretically, reducing or eliminating Substance P in affected areas could ease the pain. Experiments using naked mole-rats may help test this hypothesis and perhaps lead to new therapies.

"After we discovered that naked mole-rats naturally lacked Substance P, we realized that we had a unique situation whereby we could try to re-introduce this chemical to better understand its role in pain signaling," said Park.

A virus was applied to the feet of the rats to transport DNA that codes for Substance P through nerve endings on the skin. The virus then migrated over a period of a few days to nerve cells near the spinal cord where the DNA produced Substance P.

Each foot used was then anesthetized and held close to an uncomfortably warm -- but not damaging -- lamp to activate nerve fibers associated with Substance P but not other types of nerve fibers. The rats’ feet treated with Substance P quickly recoiled. Those not treated also withdrew from the lamp, but much more slowly.

A key unanswered question is why naked mole-rats evolved over perhaps millions of years to have no Substance P in their skin and became oblivious to normal pain stimuli.

One possible explanation is that because these curious creatures have had to cope with high levels of carbon dioxide in their crowded underground tunnel colonies -- a condition that normally would cause the type of pain associated with Substance P in mucous membranes throughout the animals’ bodies -- they have become insensitive to the pain.

Another possibility involves Substance P and blood vessel dilation in the skin -- to cool the body surface. In cold-blooded naked mole-rats, however, dilation would cause them to dangerously overheat, so they may have evolved to eliminate Substance P from their skin.

"We were surprised by how dramatic the results were," said Park. "We expected Substance P could restore some sensitivity to painful stimuli, but it was a real surprise that this single chemical could make the naked mole-rats behave just like other mammals."

Further experiments are planned with the rats to investigate how other pain systems work in the absence of Substance P.


Funding for the research was provided by grants from the National Institutes of Health.

Paul Francuch | UIC
Further information:
http://www.uic.edu/

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>