Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technique May Identify Novel Disease Genes at a Faster Clip


Researchers have used ultraviolet light to “weld” a key regulatory protein to its RNA targets, creating a new tool that can be used to identify novel proteins involved in a variety of human diseases.

Using this technique, the researchers have identified an array of RNA molecules regulated by the RNA-binding protein, Nova, which has been implicated in an autoimmune neurodegenerative disease. The researchers believe their technique may help in finding the RNA targets of other proteins involved in neurological diseases, including the most prevalent form of mental retardation, the Fragile X syndrome.

Robert B. Darnell, a Howard Hughes Medical Institute investigator at The Rockefeller University, led the research team that reported its findings in the November 14, 2003, issue of the journal Science.

Darnell and his colleagues have been investigating the function of Nova, an RNA-binding protein that regulates alternative splicing. In alternative splicing, messenger RNA, carrying the blueprint for a protein from the cell’s genes, is processed in such a way that it can produce a number of slightly different proteins. Apart from its role in alternative splicing, the Nova protein is of great interest, said Darnell, because it is targeted by the immune system in the neurodegenerative disease, paraneoplastic opsoclonus myoclonus ataxia, which causes progressive loss of motor control.

“Previous work in our laboratory had revealed how Nova bound to RNA, and we had identified a couple of specific target RNAs in the brain,” said Darnell. “These studies led us to discover that Nova was the first mammalian splicing factor that was restricted to a particular tissue. We then really wanted to know what is the full array of RNAs that Nova binds to and regulates in the brain?”

According to Darnell, Nova is just one of a rapidly growing list of RNA-binding proteins that are being implicated in human diseases. Thus, a technique that can help identify the multiple RNA targets regulated by an RNA-binding protein could potentially aid in understanding the cause of many human diseases.

To facilitate identification of the target proteins, the scientists adapted a technique that had been used in the test tube to identify the targets of RNA-binding proteins. This technique involved irradiating molecules with ultraviolet light, which caused a cross-linking reaction that chemically bonded the protein with its RNA target. The bond is so tight that the molecules could be isolated and identified together.

Darnell and his colleagues made some enhancements that resulted in the development of their “cross-linking and immunoprecipitation” (CLIP) technique. The researchers began by irradiating intact mouse brains with UV light, seeking to weld together RNA-binding proteins and their RNA targets in living tissue. Following a technically demanding purification and analytical procedure, the researchers were able to pinpoint some 340 Nova CLIP “tags” — telltale pieces of Nova-bound RNA that identified the RNA target molecule and revealed where the Nova protein bound to it. The researchers verified that the tags represented functional Nova RNA targets by comparing their splicing in wild-type mice with knockout mice lacking Nova.

The striking splicing changes in the knockout mice, said Darnell, constituted proof that Nova is the central regulator of splicing in a whole set of RNA molecules found in the brain. “We’re finding that Nova is an extremely important factor—maybe the factor—that is responsible for neuronal splicing for some targets,” he said.

Their studies turned up another important observation: Nova does not act randomly. “Looking at these targets as a group, they have a tremendous biological coherence to them,” said Darnell. “Almost seventy percent of them are RNAs that have something to do with the neuronal synapse.” Synapses are the junctions between neurons. One third of the Nova synaptic RNA targets encode proteins involved in inhibiting neuronal function. Regulating neuronal inhibition plays a key role in the balance controlling nervous system function normally as well as in neurologic disorders such as epilepsy, said Darnell.

“These findings suggest that Nova has evolved to regulate a set of RNAs that have a coordinate function,” he said. “So, if you turn Nova function up or down, you’ll coordinately regulate a group of RNAs en masse.”

The success of the CLIP method in identifying Nova targets, said Darnell, suggests that it will find broad use in discovering targets of other RNA-binding proteins, including those involved in such diseases as Fragile X mental retardation. “The study of the fragile-X-syndrome protein has been stuck, because knowing it’s an RNA-binding protein doesn’t really tell you what it’s doing,” said Darnell. “The problem has been to identify the set of RNAs that it regulates. We and others have made some progress using other techniques, but CLIP should help solve this problem.”

CLIP has also revealed that Nova may play a previously unsuspected role besides regulating alternate splicing. “We found quite a few instances of CLIP tags that are not near alternative splice sites, but are at the beginning or end of an RNA,” said Darnell. “This suggests that there may be some brand new biology going on that we didn’t suspect.” This new form of regulation might be occurring as RNA’s information is being translated into a protein by the cell’s protein-making machinery, Darnell said.

Jim Keeley | HHMI

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>