Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Major mutations, not many small changes, might lead way to new species


Hummingbirds visited nearly 70 times more often after scientists altered the color of a kind of monkeyflower from pink – beloved by bees but virtually ignored by hummingbirds – to a hummer-attractive yellow-orange.

Researchers writing in the Nov. 13 issue of Nature say perhaps it was a major change or two, such as petal color, that first forged the fork in the evolutionary road that led to today’s species of monkeyflowers that are attractive to and pollinated by hummingbirds and separate species of monkeyflowers that are pollinated by bees.

The color change is the result, it appears, of mutation in a single gene, according to H.D. "Toby" Bradshaw, a professor of biology at the University of Washington and lead author of the Nature piece. He says the resulting quick change in pollinator preferences adds to the debate over whether new species arise according to the classic, 150-year-old Darwin theory of evolution that says it may take a hundred small genetic changes, each with mounting effect, or might speciation be kick-started by a few mutations that cause large effects.

"It could be that the first adaptations require a few big changes, sort of like taking a watch that has stopped ticking and banging it a few times before making the small tweaks to restore its optimal performance," says Douglas Schemske, professor of plant biology at Michigan State University and co-author of the letter in Nature.

There are 123 species of monkeyflowers, a wildflower found around the world. Mimulus lewisii appeals to bees with forward-thrusting petals that serve as a landing platform and yellow nectar guides that contrast with the pale pink flowers. The closely related M. cardinalis, on the other hand, has a deep, tubular shape that excludes bees but is easily probed by the slender beaks of hummingbirds, and has red or deep yellow-orange petals, colors bees can’t see.

These and other differences make the species of monkeyflowers distinct and nearly eliminates crossbreeding in the wild.

In an experiment funded by the National Science Foundation, the researchers changed the region of a chromosome, thought to be a single gene, that affects the concentration of yellow pigment in petals of monkeyflowers. M. lewisii, the normal favorite of bees, responded with petals of yellow-orange instead of the usual pink. Although its other features – flower size, petal shape and amount of nectar – were unchanged, the resulting flowers were suddenly being visited 68 times more often by hummingbirds. The flowers were actually shunned by bees, probably because orange is in the spectrum of light they don’t see.

In another alteration as part of the experiment, M. cardinalis, usually favored by hummingbirds, responded with petals that were dark pink rather than deep red. These flowers appealed equally to hummingbirds and bees.

Bradshaw and Schemske say altering just the genetic region responsible for the concentration of yellow pigment is much like what might happen during a naturally occurring mutation.

"Perhaps a single mutation having to do with color changed the pollinator milieu back when there was only a single species," Bradshaw says. That one big evolutionary step may then have been followed by many smaller steps triggered by pollinator preferences that led ultimately to different species.

Monkeyflowers, so-called because someone once imagined the face of a monkey in the markings on the blossoms, have been used by researchers interested in ecology and evolution for more than 50 years. The plants readily reveal the effects of crossbreeding and can be planted in native settings so they are useful for experiments.

"A unique aspect of out work is that it combines ecological observations with molecular genetic techniques to elucidate the process of adaptation in natural populations," Schemske says.

Schemske, Bradshaw and researchers at Duke University, Clemson University, University of North Carolina and University of Montana recently received $5 million for the study of monkeyflowers and questions of how species arise. The money is part of the new Frontiers in Integrative Biological Research program .

For more information
Bradshaw, (206) 954-4392, (On Veterans Day, it will be best to call rather than use e-mail)
Schemske, (517) 432-5289,
Michigan State University media contact: Tom Oswald, (517) 432-0920,
NSF’s Frontiers in Integrative Biological Research explores biology’s mysteries:

Sandra Hines | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>