Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major mutations, not many small changes, might lead way to new species

13.11.2003


Hummingbirds visited nearly 70 times more often after scientists altered the color of a kind of monkeyflower from pink – beloved by bees but virtually ignored by hummingbirds – to a hummer-attractive yellow-orange.



Researchers writing in the Nov. 13 issue of Nature say perhaps it was a major change or two, such as petal color, that first forged the fork in the evolutionary road that led to today’s species of monkeyflowers that are attractive to and pollinated by hummingbirds and separate species of monkeyflowers that are pollinated by bees.

The color change is the result, it appears, of mutation in a single gene, according to H.D. "Toby" Bradshaw, a professor of biology at the University of Washington and lead author of the Nature piece. He says the resulting quick change in pollinator preferences adds to the debate over whether new species arise according to the classic, 150-year-old Darwin theory of evolution that says it may take a hundred small genetic changes, each with mounting effect, or might speciation be kick-started by a few mutations that cause large effects.


"It could be that the first adaptations require a few big changes, sort of like taking a watch that has stopped ticking and banging it a few times before making the small tweaks to restore its optimal performance," says Douglas Schemske, professor of plant biology at Michigan State University and co-author of the letter in Nature.

There are 123 species of monkeyflowers, a wildflower found around the world. Mimulus lewisii appeals to bees with forward-thrusting petals that serve as a landing platform and yellow nectar guides that contrast with the pale pink flowers. The closely related M. cardinalis, on the other hand, has a deep, tubular shape that excludes bees but is easily probed by the slender beaks of hummingbirds, and has red or deep yellow-orange petals, colors bees can’t see.

These and other differences make the species of monkeyflowers distinct and nearly eliminates crossbreeding in the wild.

In an experiment funded by the National Science Foundation, the researchers changed the region of a chromosome, thought to be a single gene, that affects the concentration of yellow pigment in petals of monkeyflowers. M. lewisii, the normal favorite of bees, responded with petals of yellow-orange instead of the usual pink. Although its other features – flower size, petal shape and amount of nectar – were unchanged, the resulting flowers were suddenly being visited 68 times more often by hummingbirds. The flowers were actually shunned by bees, probably because orange is in the spectrum of light they don’t see.

In another alteration as part of the experiment, M. cardinalis, usually favored by hummingbirds, responded with petals that were dark pink rather than deep red. These flowers appealed equally to hummingbirds and bees.

Bradshaw and Schemske say altering just the genetic region responsible for the concentration of yellow pigment is much like what might happen during a naturally occurring mutation.

"Perhaps a single mutation having to do with color changed the pollinator milieu back when there was only a single species," Bradshaw says. That one big evolutionary step may then have been followed by many smaller steps triggered by pollinator preferences that led ultimately to different species.

Monkeyflowers, so-called because someone once imagined the face of a monkey in the markings on the blossoms, have been used by researchers interested in ecology and evolution for more than 50 years. The plants readily reveal the effects of crossbreeding and can be planted in native settings so they are useful for experiments.

"A unique aspect of out work is that it combines ecological observations with molecular genetic techniques to elucidate the process of adaptation in natural populations," Schemske says.

Schemske, Bradshaw and researchers at Duke University, Clemson University, University of North Carolina and University of Montana recently received $5 million for the study of monkeyflowers and questions of how species arise. The money is part of the new Frontiers in Integrative Biological Research program .



For more information
Bradshaw, (206) 954-4392, toby@u.washington.edu (On Veterans Day, it will be best to call rather than use e-mail)
Schemske, (517) 432-5289, schem@msu.edu
Michigan State University media contact: Tom Oswald, (517) 432-0920, oswald@msu.edu
NSF’s Frontiers in Integrative Biological Research explores biology’s mysteries:
http://www.nsf.gov/od/lpa/news/03/pr03106.htm

Sandra Hines | EurekAlert!
Further information:
http://www.nsf.gov/od/lpa/news/03/pr03106.htm

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>