Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on process of evolution

13.11.2003


For more than a century, scientists have concluded that a species evolves or adapts by going through an infinite number of small genetic changes over a long period of time.



However, a team of researchers, including a Michigan State University plant biologist, has provided new evidence that an alternate theory is actually at work, one in which the process begins with several large mutations before settling down into a series of smaller ones.

The research is published in the Nov. 12 issue of the journal Nature.


“The question is asked, ‘If a population finds itself in some maladaptive state, due perhaps to a change in climate, how will it adapt?’” said Douglas Schemske, MSU Hannah Professor of Plant Biology and a member of the research team. “The evidence that has come to light recently – both in plants and other organisms – is that the initial changes are bigger than we might have expected.”

To study the question, Schemske and his colleagues used a common plant called the monkeyflower, changing its genetic make up in a rather dramatic way to see if it would attract new pollinators – hummingbirds instead of bees or vice versa.

By moving a small piece of the genome between two different species of the plants – the pink-flowered M. lewisii and the red-flowered M. cardinalis – the researchers created different colored flowers that attracted new pollinators.

“We discovered that moving this single genetic region caused a dramatic increase in visitation by a ‘new’ pollinator,” Schemske said. “Specifically, the orange flowers produced on the previously pink flowered and bee-pollinated M. lewisii were regularly visited by hummingbirds but shunned by bees.

“Also, the pink flowers of the previously hummingbird-pollinated M. cardinalis were attractive to both bees and hummingbirds,” he said.

Schemske and H.D. “Toby” Bradshaw, a professor of biology at the University of Washington and the lead author of the paper that appeared in Nature, said altering the genetic region responsible for the flowers’ color is much like what could happen during a naturally occurring mutation.

“Perhaps a single mutation having to do with color changed the pollinator milieu back when there was only a single species,” Bradshaw said. “That one big evolutionary step may then have been followed by many smaller steps triggered by pollinator preferences that led ultimately to different species.”

Schemske compared the process to the repairing of a finely tuned watch.

“In our model, the first adaptive adjustments might require big changes, similar to banging the broken watch a few times before making the final small tweaks to restore its optimal performance,” he said.

The plants used in the work were produced in a campus greenhouse and then transported to an area near the Yosemite National Park where natural populations of both species occur.

“This was a rather unique aspect of the work,” Schemske said, “in that it combined molecular genetic techniques and ecological observations to elucidate the process of adaptation in natural populations.”

The work was supported by a grant from the National Science Foundation.

Tom Oswald | MSU
Further information:
http://newsroom.msu.edu/site/indexer/1701/content.htm

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>