Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds new light on process of evolution

13.11.2003


For more than a century, scientists have concluded that a species evolves or adapts by going through an infinite number of small genetic changes over a long period of time.



However, a team of researchers, including a Michigan State University plant biologist, has provided new evidence that an alternate theory is actually at work, one in which the process begins with several large mutations before settling down into a series of smaller ones.

The research is published in the Nov. 12 issue of the journal Nature.


“The question is asked, ‘If a population finds itself in some maladaptive state, due perhaps to a change in climate, how will it adapt?’” said Douglas Schemske, MSU Hannah Professor of Plant Biology and a member of the research team. “The evidence that has come to light recently – both in plants and other organisms – is that the initial changes are bigger than we might have expected.”

To study the question, Schemske and his colleagues used a common plant called the monkeyflower, changing its genetic make up in a rather dramatic way to see if it would attract new pollinators – hummingbirds instead of bees or vice versa.

By moving a small piece of the genome between two different species of the plants – the pink-flowered M. lewisii and the red-flowered M. cardinalis – the researchers created different colored flowers that attracted new pollinators.

“We discovered that moving this single genetic region caused a dramatic increase in visitation by a ‘new’ pollinator,” Schemske said. “Specifically, the orange flowers produced on the previously pink flowered and bee-pollinated M. lewisii were regularly visited by hummingbirds but shunned by bees.

“Also, the pink flowers of the previously hummingbird-pollinated M. cardinalis were attractive to both bees and hummingbirds,” he said.

Schemske and H.D. “Toby” Bradshaw, a professor of biology at the University of Washington and the lead author of the paper that appeared in Nature, said altering the genetic region responsible for the flowers’ color is much like what could happen during a naturally occurring mutation.

“Perhaps a single mutation having to do with color changed the pollinator milieu back when there was only a single species,” Bradshaw said. “That one big evolutionary step may then have been followed by many smaller steps triggered by pollinator preferences that led ultimately to different species.”

Schemske compared the process to the repairing of a finely tuned watch.

“In our model, the first adaptive adjustments might require big changes, similar to banging the broken watch a few times before making the final small tweaks to restore its optimal performance,” he said.

The plants used in the work were produced in a campus greenhouse and then transported to an area near the Yosemite National Park where natural populations of both species occur.

“This was a rather unique aspect of the work,” Schemske said, “in that it combined molecular genetic techniques and ecological observations to elucidate the process of adaptation in natural populations.”

The work was supported by a grant from the National Science Foundation.

Tom Oswald | MSU
Further information:
http://newsroom.msu.edu/site/indexer/1701/content.htm

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>