Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify enzyme that may turn fleeting experience into lasting memory

12.11.2003


The enzyme that can help turn a one-time experience into a long-term memory has been identified in mice, researchers at Wake Forest University Baptist Medical Center reported today at the annual meeting of the Society for Neuroscience in New Orleans. Ashok Hegde, Ph.D., of Wake Forest described the researchers’ work and proposed a theory for how lasting memories are formed, a process that involves the enzyme known as protein kinase C.



"One of the hallmarks of memories that last very long is a close association with emotion," Hegde said in an interview. Hegde and colleagues studied female mice, which, with only one exposure at mating, can later recognize their partner’s scent. After mating, a female mouse exposed to the scent of a strange male will not continue her pregnancy. But a female exposed to her partner’s scent even a month after mating will continue her pregnancy. This suggests that the female somehow memorized her partner’s scent during the process of mating.

"The good thing about this model," Hegde said, "is that it’s simple and robust. The memory is unambiguous, and it forms after just one event." In Hegde’s model, formation of the lasting memory in the female mouse requires that olfactory (smell) information about her partner coincide with sensory information about the mating. The information is carried by separate pathways, one involving the neurotransmitter glutamate, the other norepinephrine.


Norepinephrine, which is closely related to adrenaline, is a chemical released in the brain during emotional or exciting situations. If it does play a role in humans’ being able to vividly remember details of an experience from decades ago--where people were when they heard news of President Kennedy’s assassination, for example--the question for researches is how.

"There is a threshold for memory storage," Hegde said. "The brain has to decide what is important for long-term storage. We’re trying to understand how norepinephrine leads to strong-memory formation."

When a memory is formed, structural changes take place at synapses, the connections between nerve cells. Proteins synthesized by genes in the nerve cells cause these changes. Generally speaking, the stronger the connections among synapses, the more lasting the memory. Hegde and his colleagues--Jian Mu, M.D., Dwayne W. Godwin, Ph.D., and Chenghai Dong, M.D., Ph.D., all of the Department of Neurobiology and Anatomy--collected data from the mouse brain to suggest how norepinephrine serves as a "gatekeeper" to allow memories to form under certain circumstances.

Their research suggests that the enzyme protein kinase C plays a fundamental role in turning the female’s experience of mating into a long-term memory of her partner’s scent. Protein kinase C activates genes to express certain proteins. How protein kinase C is linked to gene expression in nerve cells is the subject of a related study by Cristian Skinner, a graduate student in the Hegde lab.

"We’ve known for a long time that you need gene expression to launch protein synthesis, which is necessary to change the synaptic connections that underlie memory," Hegde said. "This could help look at how genes work to form new connections among synapses."

In collaboration with Josyf Mychaleckyj, D.Phil., of the Wake Forest Center for Human Genomics, Hegde said, the human and mouse genomes--both of which have been completely sequenced--are systematically being searched discover genes that have a critical role in long-term memory. Also, Hegde and his assistant, Thuy Smith, are using gene chips that can screen thousands of genes at the same time to identify the "memory" genes in mice.

"The details might be different in mice and people," Hegde said, "but we think the mechanism will be the same."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016 | Materials Sciences

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>