Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify enzyme that may turn fleeting experience into lasting memory

12.11.2003


The enzyme that can help turn a one-time experience into a long-term memory has been identified in mice, researchers at Wake Forest University Baptist Medical Center reported today at the annual meeting of the Society for Neuroscience in New Orleans. Ashok Hegde, Ph.D., of Wake Forest described the researchers’ work and proposed a theory for how lasting memories are formed, a process that involves the enzyme known as protein kinase C.



"One of the hallmarks of memories that last very long is a close association with emotion," Hegde said in an interview. Hegde and colleagues studied female mice, which, with only one exposure at mating, can later recognize their partner’s scent. After mating, a female mouse exposed to the scent of a strange male will not continue her pregnancy. But a female exposed to her partner’s scent even a month after mating will continue her pregnancy. This suggests that the female somehow memorized her partner’s scent during the process of mating.

"The good thing about this model," Hegde said, "is that it’s simple and robust. The memory is unambiguous, and it forms after just one event." In Hegde’s model, formation of the lasting memory in the female mouse requires that olfactory (smell) information about her partner coincide with sensory information about the mating. The information is carried by separate pathways, one involving the neurotransmitter glutamate, the other norepinephrine.


Norepinephrine, which is closely related to adrenaline, is a chemical released in the brain during emotional or exciting situations. If it does play a role in humans’ being able to vividly remember details of an experience from decades ago--where people were when they heard news of President Kennedy’s assassination, for example--the question for researches is how.

"There is a threshold for memory storage," Hegde said. "The brain has to decide what is important for long-term storage. We’re trying to understand how norepinephrine leads to strong-memory formation."

When a memory is formed, structural changes take place at synapses, the connections between nerve cells. Proteins synthesized by genes in the nerve cells cause these changes. Generally speaking, the stronger the connections among synapses, the more lasting the memory. Hegde and his colleagues--Jian Mu, M.D., Dwayne W. Godwin, Ph.D., and Chenghai Dong, M.D., Ph.D., all of the Department of Neurobiology and Anatomy--collected data from the mouse brain to suggest how norepinephrine serves as a "gatekeeper" to allow memories to form under certain circumstances.

Their research suggests that the enzyme protein kinase C plays a fundamental role in turning the female’s experience of mating into a long-term memory of her partner’s scent. Protein kinase C activates genes to express certain proteins. How protein kinase C is linked to gene expression in nerve cells is the subject of a related study by Cristian Skinner, a graduate student in the Hegde lab.

"We’ve known for a long time that you need gene expression to launch protein synthesis, which is necessary to change the synaptic connections that underlie memory," Hegde said. "This could help look at how genes work to form new connections among synapses."

In collaboration with Josyf Mychaleckyj, D.Phil., of the Wake Forest Center for Human Genomics, Hegde said, the human and mouse genomes--both of which have been completely sequenced--are systematically being searched discover genes that have a critical role in long-term memory. Also, Hegde and his assistant, Thuy Smith, are using gene chips that can screen thousands of genes at the same time to identify the "memory" genes in mice.

"The details might be different in mice and people," Hegde said, "but we think the mechanism will be the same."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>