Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify enzyme that may turn fleeting experience into lasting memory


The enzyme that can help turn a one-time experience into a long-term memory has been identified in mice, researchers at Wake Forest University Baptist Medical Center reported today at the annual meeting of the Society for Neuroscience in New Orleans. Ashok Hegde, Ph.D., of Wake Forest described the researchers’ work and proposed a theory for how lasting memories are formed, a process that involves the enzyme known as protein kinase C.

"One of the hallmarks of memories that last very long is a close association with emotion," Hegde said in an interview. Hegde and colleagues studied female mice, which, with only one exposure at mating, can later recognize their partner’s scent. After mating, a female mouse exposed to the scent of a strange male will not continue her pregnancy. But a female exposed to her partner’s scent even a month after mating will continue her pregnancy. This suggests that the female somehow memorized her partner’s scent during the process of mating.

"The good thing about this model," Hegde said, "is that it’s simple and robust. The memory is unambiguous, and it forms after just one event." In Hegde’s model, formation of the lasting memory in the female mouse requires that olfactory (smell) information about her partner coincide with sensory information about the mating. The information is carried by separate pathways, one involving the neurotransmitter glutamate, the other norepinephrine.

Norepinephrine, which is closely related to adrenaline, is a chemical released in the brain during emotional or exciting situations. If it does play a role in humans’ being able to vividly remember details of an experience from decades ago--where people were when they heard news of President Kennedy’s assassination, for example--the question for researches is how.

"There is a threshold for memory storage," Hegde said. "The brain has to decide what is important for long-term storage. We’re trying to understand how norepinephrine leads to strong-memory formation."

When a memory is formed, structural changes take place at synapses, the connections between nerve cells. Proteins synthesized by genes in the nerve cells cause these changes. Generally speaking, the stronger the connections among synapses, the more lasting the memory. Hegde and his colleagues--Jian Mu, M.D., Dwayne W. Godwin, Ph.D., and Chenghai Dong, M.D., Ph.D., all of the Department of Neurobiology and Anatomy--collected data from the mouse brain to suggest how norepinephrine serves as a "gatekeeper" to allow memories to form under certain circumstances.

Their research suggests that the enzyme protein kinase C plays a fundamental role in turning the female’s experience of mating into a long-term memory of her partner’s scent. Protein kinase C activates genes to express certain proteins. How protein kinase C is linked to gene expression in nerve cells is the subject of a related study by Cristian Skinner, a graduate student in the Hegde lab.

"We’ve known for a long time that you need gene expression to launch protein synthesis, which is necessary to change the synaptic connections that underlie memory," Hegde said. "This could help look at how genes work to form new connections among synapses."

In collaboration with Josyf Mychaleckyj, D.Phil., of the Wake Forest Center for Human Genomics, Hegde said, the human and mouse genomes--both of which have been completely sequenced--are systematically being searched discover genes that have a critical role in long-term memory. Also, Hegde and his assistant, Thuy Smith, are using gene chips that can screen thousands of genes at the same time to identify the "memory" genes in mice.

"The details might be different in mice and people," Hegde said, "but we think the mechanism will be the same."

Karen Richardson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>