Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme Revealed That is Key to Fungus’s Ability to Breach Immune System

11.11.2003


A newly discovered mechanism by which an infectious fungus evades the immune system could lead to novel methods to fight the fungus and other disease-causing microbes, according to Howard Hughes Medical Institute investigators at Duke University Medical Center.


Joseph Heitman, M.D., Ph.D.



Disruption of a key enzyme in the fungus Cryptococcus neoformans -- a common cause of infection of the central nervous system in patients such as organ transplant recipients who lack a functioning immune system -- led to a significant loss of fungal virulence in mice, the team found. That loss of virulence stemmed from the fungus’s inability to launch a counterattack against components of the innate immune system, the body’s first line of defense against infection, the study showed.

The Duke-based team -- led by HHMI geneticist Joseph Heitman, M.D., director of Duke’s Center for Microbial Pathogenesis, and HHMI biochemist Jonathan Stamler, M.D. -- reported their findings in the Nov. 11, 2003, issue of Current Biology. The work was funded by the National Institutes of Allergy and Infectious Diseases and the Burroughs Wellcome Fund.


The "fungal defense" enzyme, called flavohemoglobin, is prevalent among many bacterial and fungal pathogens, Heitman said, which suggests that the findings in Cryptococcus are likely relevant to other infectious microbes. New drugs that target these enzymes might therefore represent effective treatments for a wide range of infectious diseases, he said.

The human immune system uses a two-pronged mechanism to fight infection: a rapid innate response and a slower adaptive response that depends on the production of antibodies. Key components of the innate immune system are "search-and-destroy" cells called macrophages that engulf and kill invading pathogens. Macrophages kill infectious microbes using a combination of oxidants, including hydrogen peroxide, nitric oxide and related molecules.

"The body must rely on macrophages of the innate immune system to protect itself before the adaptive immune system can respond to invasion," Heitman said. "While much is known about how pathogens defend themselves against hydrogen peroxide produced by the macrophages, this study is the first biologically relevant test of what microbes do to counteract nitric oxide and promote infection."

The researchers found that a mutant C. neoformans strain lacking the flavohemoglobin enzyme failed to break down nitric oxide in laboratory cultures. Fungus with the enzyme deficiency also ceased to grow when in the presence of nitric oxide, whereas ordinary fungus survived normally.

Mice infected with the flavohemoglobin-deficient C. neoformans survived for five days longer than those infected with the normally virulent strain. In contrast, the normal and mutant fungal strains were equally virulent in mice whose immune cells could not produce nitric oxide, the team reported.

The mutant fungus also failed to grow normally in laboratory dishes containing macrophage cells, further implicating the innate immune system in the loss of virulence exhibited by fungi lacking flavohemoglobin.

The team discovered a second enzyme, known as GSNO reductase, which also plays a role in defending the fungus against nitric oxide-related molecules produced by macrophages. Mutant fungal strains deficient in both enzymes were more severely impaired than those lacking flavohemoglobin only.

"By disabling either the fungal nitric oxide defense system or the immune system’s ability to produce nitric oxide, we were able to tip the balance one way or the other -- in favor of the fungal infection or the host," Heitman said. "That raises the possibility that we could treat infectious disease with drugs that either inhibit fungal defense enzymes or increase the innate immune system’s ability to mount a nitrosative attack."

Collaborators on the study include Marisol de Jesus-Berrios, Ph.D., Gary Cox, M.D., Limin Liu, Ph.D., and Jesse Nussbaum, all of Duke.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7186

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>