Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme Revealed That is Key to Fungus’s Ability to Breach Immune System

11.11.2003


A newly discovered mechanism by which an infectious fungus evades the immune system could lead to novel methods to fight the fungus and other disease-causing microbes, according to Howard Hughes Medical Institute investigators at Duke University Medical Center.


Joseph Heitman, M.D., Ph.D.



Disruption of a key enzyme in the fungus Cryptococcus neoformans -- a common cause of infection of the central nervous system in patients such as organ transplant recipients who lack a functioning immune system -- led to a significant loss of fungal virulence in mice, the team found. That loss of virulence stemmed from the fungus’s inability to launch a counterattack against components of the innate immune system, the body’s first line of defense against infection, the study showed.

The Duke-based team -- led by HHMI geneticist Joseph Heitman, M.D., director of Duke’s Center for Microbial Pathogenesis, and HHMI biochemist Jonathan Stamler, M.D. -- reported their findings in the Nov. 11, 2003, issue of Current Biology. The work was funded by the National Institutes of Allergy and Infectious Diseases and the Burroughs Wellcome Fund.


The "fungal defense" enzyme, called flavohemoglobin, is prevalent among many bacterial and fungal pathogens, Heitman said, which suggests that the findings in Cryptococcus are likely relevant to other infectious microbes. New drugs that target these enzymes might therefore represent effective treatments for a wide range of infectious diseases, he said.

The human immune system uses a two-pronged mechanism to fight infection: a rapid innate response and a slower adaptive response that depends on the production of antibodies. Key components of the innate immune system are "search-and-destroy" cells called macrophages that engulf and kill invading pathogens. Macrophages kill infectious microbes using a combination of oxidants, including hydrogen peroxide, nitric oxide and related molecules.

"The body must rely on macrophages of the innate immune system to protect itself before the adaptive immune system can respond to invasion," Heitman said. "While much is known about how pathogens defend themselves against hydrogen peroxide produced by the macrophages, this study is the first biologically relevant test of what microbes do to counteract nitric oxide and promote infection."

The researchers found that a mutant C. neoformans strain lacking the flavohemoglobin enzyme failed to break down nitric oxide in laboratory cultures. Fungus with the enzyme deficiency also ceased to grow when in the presence of nitric oxide, whereas ordinary fungus survived normally.

Mice infected with the flavohemoglobin-deficient C. neoformans survived for five days longer than those infected with the normally virulent strain. In contrast, the normal and mutant fungal strains were equally virulent in mice whose immune cells could not produce nitric oxide, the team reported.

The mutant fungus also failed to grow normally in laboratory dishes containing macrophage cells, further implicating the innate immune system in the loss of virulence exhibited by fungi lacking flavohemoglobin.

The team discovered a second enzyme, known as GSNO reductase, which also plays a role in defending the fungus against nitric oxide-related molecules produced by macrophages. Mutant fungal strains deficient in both enzymes were more severely impaired than those lacking flavohemoglobin only.

"By disabling either the fungal nitric oxide defense system or the immune system’s ability to produce nitric oxide, we were able to tip the balance one way or the other -- in favor of the fungal infection or the host," Heitman said. "That raises the possibility that we could treat infectious disease with drugs that either inhibit fungal defense enzymes or increase the innate immune system’s ability to mount a nitrosative attack."

Collaborators on the study include Marisol de Jesus-Berrios, Ph.D., Gary Cox, M.D., Limin Liu, Ph.D., and Jesse Nussbaum, all of Duke.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7186

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>