Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme Revealed That is Key to Fungus’s Ability to Breach Immune System

11.11.2003


A newly discovered mechanism by which an infectious fungus evades the immune system could lead to novel methods to fight the fungus and other disease-causing microbes, according to Howard Hughes Medical Institute investigators at Duke University Medical Center.


Joseph Heitman, M.D., Ph.D.



Disruption of a key enzyme in the fungus Cryptococcus neoformans -- a common cause of infection of the central nervous system in patients such as organ transplant recipients who lack a functioning immune system -- led to a significant loss of fungal virulence in mice, the team found. That loss of virulence stemmed from the fungus’s inability to launch a counterattack against components of the innate immune system, the body’s first line of defense against infection, the study showed.

The Duke-based team -- led by HHMI geneticist Joseph Heitman, M.D., director of Duke’s Center for Microbial Pathogenesis, and HHMI biochemist Jonathan Stamler, M.D. -- reported their findings in the Nov. 11, 2003, issue of Current Biology. The work was funded by the National Institutes of Allergy and Infectious Diseases and the Burroughs Wellcome Fund.


The "fungal defense" enzyme, called flavohemoglobin, is prevalent among many bacterial and fungal pathogens, Heitman said, which suggests that the findings in Cryptococcus are likely relevant to other infectious microbes. New drugs that target these enzymes might therefore represent effective treatments for a wide range of infectious diseases, he said.

The human immune system uses a two-pronged mechanism to fight infection: a rapid innate response and a slower adaptive response that depends on the production of antibodies. Key components of the innate immune system are "search-and-destroy" cells called macrophages that engulf and kill invading pathogens. Macrophages kill infectious microbes using a combination of oxidants, including hydrogen peroxide, nitric oxide and related molecules.

"The body must rely on macrophages of the innate immune system to protect itself before the adaptive immune system can respond to invasion," Heitman said. "While much is known about how pathogens defend themselves against hydrogen peroxide produced by the macrophages, this study is the first biologically relevant test of what microbes do to counteract nitric oxide and promote infection."

The researchers found that a mutant C. neoformans strain lacking the flavohemoglobin enzyme failed to break down nitric oxide in laboratory cultures. Fungus with the enzyme deficiency also ceased to grow when in the presence of nitric oxide, whereas ordinary fungus survived normally.

Mice infected with the flavohemoglobin-deficient C. neoformans survived for five days longer than those infected with the normally virulent strain. In contrast, the normal and mutant fungal strains were equally virulent in mice whose immune cells could not produce nitric oxide, the team reported.

The mutant fungus also failed to grow normally in laboratory dishes containing macrophage cells, further implicating the innate immune system in the loss of virulence exhibited by fungi lacking flavohemoglobin.

The team discovered a second enzyme, known as GSNO reductase, which also plays a role in defending the fungus against nitric oxide-related molecules produced by macrophages. Mutant fungal strains deficient in both enzymes were more severely impaired than those lacking flavohemoglobin only.

"By disabling either the fungal nitric oxide defense system or the immune system’s ability to produce nitric oxide, we were able to tip the balance one way or the other -- in favor of the fungal infection or the host," Heitman said. "That raises the possibility that we could treat infectious disease with drugs that either inhibit fungal defense enzymes or increase the innate immune system’s ability to mount a nitrosative attack."

Collaborators on the study include Marisol de Jesus-Berrios, Ph.D., Gary Cox, M.D., Limin Liu, Ph.D., and Jesse Nussbaum, all of Duke.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7186

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>