Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad eye for the straight fly: Male flesh flies do not need high-definition vision to catch and mate with females

11.11.2003


While examining the flight behavior of flesh flies, Cornell University entomologists have discovered that males of the species (Sarcophagidae: Neobellieria bullata ) -- traveling at very high speed, soaring in sexual pursuit and swiveling their heads like gun turrets -- literally can lose sight of a target female. Yet the males compensate for the momentary loss of vision and still catch up to mate.



A detailed explanation of this quirk in vision physiology and neurological processing could help military and aerospace engineers to build aircraft and artillery that have improved detection of evasive targets.

"This fly has a very small brain, but it moves at relatively fast speeds, over 2 meters per second. The male flesh fly is very successful at chasing and catching the female even without an elaborate, high-powered onboard computer. Our study is the first to determine that chasers, indeed, radically move their heads while in pursuit, which means that they may be aiming the high-resolution part of their eye at the female," said Cole Gilbert, Cornell University professor of entomology. He is presenting this research today Nov. 10, at the Society for Neuroscience meeting at the Ernest N. Morial Convention Center in New Orleans. Gilbert’s poster presentation is titled "View from the cockpit of a fly: visual guidance of sexual aerial pursuit in male flesh flies."


Flesh flies are so named because of their diet: They are among the first species to show up on dead animals. It was near such road-kill carcasses that the researchers were able to gather the males and females of this species.

While male flesh flies have evolved high-resolution regions in their compound eye, for the purpose of catching and mating with females, those high-definition parts are not always necessary, the researchers found. "Some flies look right at their target and others do not," said Gilbert. "Knowing where the fly is looking is important because visual properties, such as spatial acuity and processing speed of photoreceptive cells, vary across the fly’s retina and across the fly’s field of view."

To study the sexual, aerial pursuit of flesh flies, Gilbert, along with P. Olivier Zanen, Cornell postdoctoral researcher, and John E. Layne, Cornell researcher in entomology, managed to observe the flies, in flight, on high-speed digital video at 250 frames per second. The entomologists looked at individual video frames and measured the precise angular rotation of each fly’s head. By examining different facets of the compound eyes, the entomologists measured the spacing of the optical axes and were able to distinguish between the high-resolution and the low-resolution parts of the compound eyes.

The scientists then took the digital video, fed it into an imaging software program on a computer and added the position of the female. The computer imaging software turned the digital files into three-dimensional re-created animations. The researchers then used a "ray-tracing" technique on the animations to glean the direction that the male fly was looking and to see which part of the compound eye was being used to image the female.

Through this technique, the entomologists learned that male flies, in pursuit of females, turn their heads during the chase and that despite having high-definition eye facets, the males do not necessarily use them. The next step is to learn how the turret-like head movement contributes to visual guidance.

When Gilbert and his colleagues discuss the fly’s high speed, they put that information into comparable human terms. To equal the relative speed of a male flesh fly, a man would have to run at the supersonic speed of Mach 1.2, or at about half the maximum speed of an F-15 Eagle aircraft. In relative speed to the fly, the F-15 Eagle aircraft itself would have to reach a hypersonic speed close to Mach 12.

This work was supported by a grant from the National Institutes of Mental Health for training neuroscientists in understanding the neurobiological basis of animal behavior. Other support was a grant from the U.S. Air Force’s Office of Scientific Research, which unites aerospace engineers with neurobiologists to examine evolutionary animal solutions to problems of interest to engineers.

Blaine P. Friedlander Jr. | Cornell News
Further information:
http://www.news.cornell.edu/releases/Nov03/SexFliesGilbert.bpf.html

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>