Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado team developing ’Flu Chip’ for fast, accurate diagnosis

11.11.2003


From left to right, CU-Boulder Associate Professor Robert Kuptcha, undergraduate student Amy Reppert, graduate student Michael Townsend and team leader and Professor Kathy Rowlen of the chemistry and biochemistry department. Photo courtesy of Casey Cass, University of Colorado. The Flu Chip image was accessed from the website of Leming Shi of Jefferson, Ark.


A team of researchers at the University of Colorado at Boulder is developing a "Flu Chip" that will aid physicians in swiftly diagnosing respiratory illness for future flu seasons.

The Flu Chip will allow doctors and public health officials to differentiate between three types of influenza and other viruses that cause similar clinical symptoms, such as severe acute respiratory syndrome, or SARS.

The CU team, led by Professor Kathy Rowlen and co-principal investigator and Associate Professor Robert Kuchta of the chemistry and biochemistry department, recently received a $1.7 million grant from the National Institute of Infectious Disease to develop the chip in collaboration with the Centers for Disease Control and Prevention in Atlanta, the World Health Organization and Bio-Rad Laboratories in Hercules, Calif.



According to Rowlen, influenza A viral infections have had a dramatic impact on humans, with an estimated 500,000 deaths worldwide each year and significant economic impact resulting from direct and indirect loss of productivity during infection.

"For comparison, the corona virus that caused the recent outbreak of SARS has claimed less than 1,000 lives to date," said Rowlen. "However, as demonstrated by the public response to SARS, of great concern is the ability of viruses to undergo natural or engineered genetic change that could result in a virus capable of rapid and lethal spread within the population."

One of the most dramatic events in influenza history was the so-called "Spanish Flu" pandemic of 1918-1919. In less than a year, between 20 million and 40 million people died from influenza, with an estimated one fifth of the world’s population infected.

"Because it is readily transmitted, primarily as an airborne pathogen and because the virus can be genetically engineered into novel forms, influenza A also represents a serious biodefense concern," Rowlen said.

"Rapid identification of any biological pathogen, such as flu A, anthrax or SARS, requires a reliable and relatively inexpensive analytical system that can be widely manufactured and distributed," she said. "Current commercial technology for rapid identification of influenza A does not provide any genetic information and therefore cannot provide investigators at the CDC or the World Health Organization with adequate information for managing local epidemics or worldwide pandemics."

DNA microarrays, which are the basis for the Flu Chip, represent a promising technology for accurate and relatively rapid pathogen identification based on genetic "signatures."

The general structure of a DNA microarray is a well-defined arrangement of micron-sized spots on an optically flat surface, each of which contains a layer of relatively short strands of DNA designed to capture a specific genetic sequence from a sample.

Each spot -- about one-thousandth of an inch across -- is deposited by a robot. Patient samples can be evaluated through a fairly simple procedure called hybridization. Hybridization is achieved by heating and slowly cooling the sample processed from a patient with the microarray.

The microarray is then developed to produce an image, she said. By knowing the identity of specific DNA segments known as oligonucleotides at any location within the array, one can determine which bits of genetic information were present in the patient sample by reading the image.

The CU team of researchers is developing the Flu Chip as an inexpensive way to swiftly -- within an hour or less -- screen for influenza A, the most bothersome strain of flu, as well as influenza B and C, SARS and respiratory syncytial virus, which is a primary cause of respiratory illness in infants. "In addition, the Flu Chip could play a significant role in detecting and containing viral outbreaks or alerting officials to an ’engineered’ influenza virus," Rowlen said.

Other members of the CU-Boulder Flu Chip team include post-doctoral research associate Chad Moore, graduate students Michael Townsend and James Smagala, and undergraduate student Amy Reppert.

"In order to address the needs in developing nations, one of our primary objectives is to create an inexpensive and field-portable test kit for respiratory illness," said Rowlen. "The goal is to provide an important new tool to the World Health Organization for global screening of respiratory illness," she said.

Kathy Rowlen | CU-Boulder
Further information:
http://www.colorado.edu/news/
http://www.colorado.edu/news/releases/2003/434.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>