Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado team developing ’Flu Chip’ for fast, accurate diagnosis

11.11.2003


From left to right, CU-Boulder Associate Professor Robert Kuptcha, undergraduate student Amy Reppert, graduate student Michael Townsend and team leader and Professor Kathy Rowlen of the chemistry and biochemistry department. Photo courtesy of Casey Cass, University of Colorado. The Flu Chip image was accessed from the website of Leming Shi of Jefferson, Ark.


A team of researchers at the University of Colorado at Boulder is developing a "Flu Chip" that will aid physicians in swiftly diagnosing respiratory illness for future flu seasons.

The Flu Chip will allow doctors and public health officials to differentiate between three types of influenza and other viruses that cause similar clinical symptoms, such as severe acute respiratory syndrome, or SARS.

The CU team, led by Professor Kathy Rowlen and co-principal investigator and Associate Professor Robert Kuchta of the chemistry and biochemistry department, recently received a $1.7 million grant from the National Institute of Infectious Disease to develop the chip in collaboration with the Centers for Disease Control and Prevention in Atlanta, the World Health Organization and Bio-Rad Laboratories in Hercules, Calif.



According to Rowlen, influenza A viral infections have had a dramatic impact on humans, with an estimated 500,000 deaths worldwide each year and significant economic impact resulting from direct and indirect loss of productivity during infection.

"For comparison, the corona virus that caused the recent outbreak of SARS has claimed less than 1,000 lives to date," said Rowlen. "However, as demonstrated by the public response to SARS, of great concern is the ability of viruses to undergo natural or engineered genetic change that could result in a virus capable of rapid and lethal spread within the population."

One of the most dramatic events in influenza history was the so-called "Spanish Flu" pandemic of 1918-1919. In less than a year, between 20 million and 40 million people died from influenza, with an estimated one fifth of the world’s population infected.

"Because it is readily transmitted, primarily as an airborne pathogen and because the virus can be genetically engineered into novel forms, influenza A also represents a serious biodefense concern," Rowlen said.

"Rapid identification of any biological pathogen, such as flu A, anthrax or SARS, requires a reliable and relatively inexpensive analytical system that can be widely manufactured and distributed," she said. "Current commercial technology for rapid identification of influenza A does not provide any genetic information and therefore cannot provide investigators at the CDC or the World Health Organization with adequate information for managing local epidemics or worldwide pandemics."

DNA microarrays, which are the basis for the Flu Chip, represent a promising technology for accurate and relatively rapid pathogen identification based on genetic "signatures."

The general structure of a DNA microarray is a well-defined arrangement of micron-sized spots on an optically flat surface, each of which contains a layer of relatively short strands of DNA designed to capture a specific genetic sequence from a sample.

Each spot -- about one-thousandth of an inch across -- is deposited by a robot. Patient samples can be evaluated through a fairly simple procedure called hybridization. Hybridization is achieved by heating and slowly cooling the sample processed from a patient with the microarray.

The microarray is then developed to produce an image, she said. By knowing the identity of specific DNA segments known as oligonucleotides at any location within the array, one can determine which bits of genetic information were present in the patient sample by reading the image.

The CU team of researchers is developing the Flu Chip as an inexpensive way to swiftly -- within an hour or less -- screen for influenza A, the most bothersome strain of flu, as well as influenza B and C, SARS and respiratory syncytial virus, which is a primary cause of respiratory illness in infants. "In addition, the Flu Chip could play a significant role in detecting and containing viral outbreaks or alerting officials to an ’engineered’ influenza virus," Rowlen said.

Other members of the CU-Boulder Flu Chip team include post-doctoral research associate Chad Moore, graduate students Michael Townsend and James Smagala, and undergraduate student Amy Reppert.

"In order to address the needs in developing nations, one of our primary objectives is to create an inexpensive and field-portable test kit for respiratory illness," said Rowlen. "The goal is to provide an important new tool to the World Health Organization for global screening of respiratory illness," she said.

Kathy Rowlen | CU-Boulder
Further information:
http://www.colorado.edu/news/
http://www.colorado.edu/news/releases/2003/434.html

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>