Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jefferson Scientists Show Low Lead Levels Can Affect Development of Brain Cells


Neuroscientists at Jefferson Medical College have shown for the first time that low levels of lead have a profound effect on the growth and development of embryonic stem cells.

According to Jay Schneider, Ph.D., professor of neurology, pathology, anatomy and cell biology at Jefferson Medical College of Thomas Jefferson University, researchers have known for years the potentially devastating effects of even low levels of lead exposure on the cognitive abilities of children. Lead exposure is particularly dangerous in utero, given the “efficient transfer of lead” from a mother to her developing fetus, he notes.

Dr. Schneider asked, What impact does lead have on the birth and development of brain cells, and more specifically, how does lead affect what the brain stem cells become?

Dr. Schneider, who is also director of the Parkinson’s Disease Research Unit at Jefferson, and his co-workers took neural stem cells from different parts of the rat brain and grew them in a dish. Neural stem cells are cells that can become one of three cell types: a neuron, an oligodendrocyte or an astrocyte. The latter two cell types play supportive roles in the brain.

Dr. Schneider and his colleague, Funan Huang, a visiting scientist from China, found that low levels of lead – below the levels of exposure deemed safe for humans by the Centers for Disease Control and Prevention – can significantly affect the proliferation and development of neural stem cells. Lead significantly inhibited the ability of stem cells to differentiate into either neurons or oligodendrocytes, but increased their ability to become astrocytes, he explains. Dr. Schneider presented these findings Sunday, Nov. 9 at the annual meeting of the Society for Neuroscience in New Orleans.

Young women who were lead poisoned as youngsters can, when pregnant, pass lead to their fetuses, Dr. Schneider says. Lead has been stored in their bones, and bone resorption due to increased demands for calcium during pregnancy releases this stored lead back into the circulation. Prenatal exposure to lead is particularly dangerous because toxic effects on the fetus, as well as detrimental effects on the cognitive and motor development of the infant, have been documented.

“We think our results could indicate that early in development, the presence of lead could significantly affect the development and organization of the fetal brain,” Dr. Schneider says.

Next, he and his team plan to examine the effects of lead in an animal model. They plan to compare the effects of lead exposure both before and after birth, particularly the effects on the fate of neural stem cells and the influences of lead on cognitive abilities.

Steven Benowitz | TJUH
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>