Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stepping Way Out: Scripps Scientists Watch Clam Feet Elongate Far from the Shell

10.11.2003


Scientists at Scripps Institution of Oceanography at the University of California, San Diego, have documented what they are calling possibly the most extreme case of animal structure elongation documented to date.




In a paper published in the November 6 issue of the journal Nature, Suzanne Dufour and Horst Felbeck show that a clam from a certain species can extend its foot (clams have only one foot) up to 30 times the length of its shell to reach chemicals in marine sediment necessary for the survival of their symbionts, marine bacteria that live within the clams.

To test the extension process, Dufour set up aquarium tanks with sediment to investigate how clams that require chemicals differ from those that do not. Clams that live in a symbiotic relationship with marine bacteria act as hosts that retrieve chemicals, typically sulfide or methane.


The Nature paper explains that the symbiotic clams in the Thyasiridae family elongate their feet to burrow extensive mines in an effort to reach the sulfide. X-rays taken through Dufour’s plexiglass tanks over several weeks revealed long, branch-like mines extending through the sediment, especially in cases tested under low sulfide conditions, which forced clams to stretch their feet farther. While they had expected some extension, Dufour says the results were "amazing." She found clams with shells measuring 4.5 millimeters that had elongated their feet some 13 centimeters from the shell.

"What I find the most interesting about this work is that only the clams with symbionts make these very long burrows," said Dufour, a graduate student in the marine biology curricular program at Scripps. "The thyasirids in my study that didn’t have symbionts did not make such burrows. To get the sulfide the bacteria need, these clams have evolved the ability to mine the sediment with their feet-it shows that very different species can find amazing ways of cooperating."

The study was supported by Scripps Institution’s graduate department, the Baxter and Alma Ricard Foundation, and the National Science Foundation.


Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps is celebrating its centennial in 2003.

Mario Aguilera | Scripps News
Further information:
http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=613

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>