Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stepping Way Out: Scripps Scientists Watch Clam Feet Elongate Far from the Shell

10.11.2003


Scientists at Scripps Institution of Oceanography at the University of California, San Diego, have documented what they are calling possibly the most extreme case of animal structure elongation documented to date.




In a paper published in the November 6 issue of the journal Nature, Suzanne Dufour and Horst Felbeck show that a clam from a certain species can extend its foot (clams have only one foot) up to 30 times the length of its shell to reach chemicals in marine sediment necessary for the survival of their symbionts, marine bacteria that live within the clams.

To test the extension process, Dufour set up aquarium tanks with sediment to investigate how clams that require chemicals differ from those that do not. Clams that live in a symbiotic relationship with marine bacteria act as hosts that retrieve chemicals, typically sulfide or methane.


The Nature paper explains that the symbiotic clams in the Thyasiridae family elongate their feet to burrow extensive mines in an effort to reach the sulfide. X-rays taken through Dufour’s plexiglass tanks over several weeks revealed long, branch-like mines extending through the sediment, especially in cases tested under low sulfide conditions, which forced clams to stretch their feet farther. While they had expected some extension, Dufour says the results were "amazing." She found clams with shells measuring 4.5 millimeters that had elongated their feet some 13 centimeters from the shell.

"What I find the most interesting about this work is that only the clams with symbionts make these very long burrows," said Dufour, a graduate student in the marine biology curricular program at Scripps. "The thyasirids in my study that didn’t have symbionts did not make such burrows. To get the sulfide the bacteria need, these clams have evolved the ability to mine the sediment with their feet-it shows that very different species can find amazing ways of cooperating."

The study was supported by Scripps Institution’s graduate department, the Baxter and Alma Ricard Foundation, and the National Science Foundation.


Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps is celebrating its centennial in 2003.

Mario Aguilera | Scripps News
Further information:
http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=613

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>