Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can viruses that infect bacteria fight plant disease?

07.11.2003


While the medical community has been exploring the use of bacteriophages, a form of virus that can be used to manage bacteria that have become resistant to antibiotics, plant pathologists with the American Phytopathological Society (APS) now say that this same approach may also help fight plant disease.

According to Jason Gill, a phage researcher at the University of Guelph, Guelph, Ontario, phages have been proposed as plant-pathogen control agents in a process known as phage therapy--the application of phages to ecosystems to reduce the population size of bacteria. "Phage could be explored as a biological control agent--the use of one organism to suppress another," said Gill.

Like other methods of biological control, one advantage of phage therapy is a reduction in the usage of chemical agents against pest species, which, in the case of phage, means a reduction in the usage of chemical antibiotics, said Gill. Another potential benefit of phage therapy is that phages are generally quite specific for their host bacterial species, and so can be targeted towards harmful bacteria while leaving other, potentially beneficial bacteria intact.



Phage therapy has been used successfully against bacterial blotch of mushrooms caused by Pseudomonas tolaasii. In studies notable for the employment of phage host-range mutants, phage therapy has also been employed against bacterial blight of geraniums and bacterial spot of tomatoes, both caused by pathovars of Xanthomonas campestris.

Though seemingly effective in certain situations, it is likely that phage therapy against bacterial plant pathogens will not prove to be a magic bullet in all cases, said Gill. The natural interactions between phages, bacteria, and plants are still not well understood. While phages that attack pathogenic bacteria can help improve plant health, other phages may attack the bacteria that affect the root nodulation of plants such as soybeans, which are necessary for normal plant growth.

Amy Steigman | EurekAlert!
Further information:
http://www.apsnet.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>