Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can viruses that infect bacteria fight plant disease?


While the medical community has been exploring the use of bacteriophages, a form of virus that can be used to manage bacteria that have become resistant to antibiotics, plant pathologists with the American Phytopathological Society (APS) now say that this same approach may also help fight plant disease.

According to Jason Gill, a phage researcher at the University of Guelph, Guelph, Ontario, phages have been proposed as plant-pathogen control agents in a process known as phage therapy--the application of phages to ecosystems to reduce the population size of bacteria. "Phage could be explored as a biological control agent--the use of one organism to suppress another," said Gill.

Like other methods of biological control, one advantage of phage therapy is a reduction in the usage of chemical agents against pest species, which, in the case of phage, means a reduction in the usage of chemical antibiotics, said Gill. Another potential benefit of phage therapy is that phages are generally quite specific for their host bacterial species, and so can be targeted towards harmful bacteria while leaving other, potentially beneficial bacteria intact.

Phage therapy has been used successfully against bacterial blotch of mushrooms caused by Pseudomonas tolaasii. In studies notable for the employment of phage host-range mutants, phage therapy has also been employed against bacterial blight of geraniums and bacterial spot of tomatoes, both caused by pathovars of Xanthomonas campestris.

Though seemingly effective in certain situations, it is likely that phage therapy against bacterial plant pathogens will not prove to be a magic bullet in all cases, said Gill. The natural interactions between phages, bacteria, and plants are still not well understood. While phages that attack pathogenic bacteria can help improve plant health, other phages may attack the bacteria that affect the root nodulation of plants such as soybeans, which are necessary for normal plant growth.

Amy Steigman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>