Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to break cellular code

07.11.2003


Despite the rich knowledge scientists now have of the genes that constitute the human genome, researchers have yet to unravel the precise choreography by which they work – or malfunction – together in the cell in response to triggers from the outside world.



"There is a code we need to understand to determine what happens to a cell under many different conditions, and ultimately to make predictions of how an entire genome is regulated," explains Julia Zeitlinger, a postdoctoral associate at Whitehead Institute for Biomedical Research.

Key to cracking this code, she says, is a set of proteins called transcription factors, which bind to specific genes to produce proteins. Akin to computer programs that return different results depending on the input data, transcription factors can carry out multiple functions in the cell in response to distinct stimuli.


For example, expose a yeast transcription factor called Ste12 to a certain pheromone from a potential mating partner, and it induces a mating response. But starve the yeast for nutrients, and the same transcription factor provokes filamentation – the yeast begins to sprout numerous threadlike strands.

Pinpointing the mechanism that makes transcription factors such as Ste12 respond differently under different environmental inputs could enable scientists to better predict cellular behavior and disease pathology.

In a study published earlier this year in the journal Cell, Zeitlinger and colleagues at Whitehead discovered that when a multipurpose transcription factor is exposed to a particular environmental condition, it directly orchestrates a global change throughout the genome in binding sites involved in the cellular behavior induced by that condition.

The team monitored all binding sites of the transcription factor Ste12 in yeast while exposing the genome to the pheromone that induces mating and to butanol, an alcohol that mimics the conditions that promote filamentation. They used a technique called genome-wide location analysis, a process pioneered by Whitehead Member Richard Young that uses DNA microarrays to enable rapid analysis of protein interaction with the DNA of an entire genome.

"When we profiled the binding sites of Ste12 under the two developmental conditions, we found that Ste12 indeed undergoes the predicted global switch in binding," recalls Zeitlinger, who works in Young’s lab and collaborates with scientists at MIT’s The Broad Institute. The researchers found that this transcription factor, rather than activating a chain reaction of other transcription factors in the cellular network, directly determines which genes are activated under each condition.

Zeitlinger plans to investigate if this mechanism occurs generally in yeast and higher organisms, work that ultimately could help physicians better understand, diagnose and disrupt certain diseases at the cellular level.

"Ste12 is able to undergo the switch in binding because of its cooperative interaction with another transcription factor, Tec1," Zeitlinger says. "My hypothesis is that there are different types of cooperative interactions between transcription factors. By defining them and understanding how they work, I hope to construct a grammar to the regulatory code. This will help to make predictions of cellular behavior based on DNA sequence."

Kelli Whitlock | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>