Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to break cellular code

07.11.2003


Despite the rich knowledge scientists now have of the genes that constitute the human genome, researchers have yet to unravel the precise choreography by which they work – or malfunction – together in the cell in response to triggers from the outside world.



"There is a code we need to understand to determine what happens to a cell under many different conditions, and ultimately to make predictions of how an entire genome is regulated," explains Julia Zeitlinger, a postdoctoral associate at Whitehead Institute for Biomedical Research.

Key to cracking this code, she says, is a set of proteins called transcription factors, which bind to specific genes to produce proteins. Akin to computer programs that return different results depending on the input data, transcription factors can carry out multiple functions in the cell in response to distinct stimuli.


For example, expose a yeast transcription factor called Ste12 to a certain pheromone from a potential mating partner, and it induces a mating response. But starve the yeast for nutrients, and the same transcription factor provokes filamentation – the yeast begins to sprout numerous threadlike strands.

Pinpointing the mechanism that makes transcription factors such as Ste12 respond differently under different environmental inputs could enable scientists to better predict cellular behavior and disease pathology.

In a study published earlier this year in the journal Cell, Zeitlinger and colleagues at Whitehead discovered that when a multipurpose transcription factor is exposed to a particular environmental condition, it directly orchestrates a global change throughout the genome in binding sites involved in the cellular behavior induced by that condition.

The team monitored all binding sites of the transcription factor Ste12 in yeast while exposing the genome to the pheromone that induces mating and to butanol, an alcohol that mimics the conditions that promote filamentation. They used a technique called genome-wide location analysis, a process pioneered by Whitehead Member Richard Young that uses DNA microarrays to enable rapid analysis of protein interaction with the DNA of an entire genome.

"When we profiled the binding sites of Ste12 under the two developmental conditions, we found that Ste12 indeed undergoes the predicted global switch in binding," recalls Zeitlinger, who works in Young’s lab and collaborates with scientists at MIT’s The Broad Institute. The researchers found that this transcription factor, rather than activating a chain reaction of other transcription factors in the cellular network, directly determines which genes are activated under each condition.

Zeitlinger plans to investigate if this mechanism occurs generally in yeast and higher organisms, work that ultimately could help physicians better understand, diagnose and disrupt certain diseases at the cellular level.

"Ste12 is able to undergo the switch in binding because of its cooperative interaction with another transcription factor, Tec1," Zeitlinger says. "My hypothesis is that there are different types of cooperative interactions between transcription factors. By defining them and understanding how they work, I hope to construct a grammar to the regulatory code. This will help to make predictions of cellular behavior based on DNA sequence."

Kelli Whitlock | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>