Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unraveling lice genome to halt blood-sucking pest

04.11.2003


Research aimed at understanding how lice feed off humans may lead to new methods to control the blood-sucking pest that can transmit fatal diseases.


Genetic research conducted by Purdue researcher Barry Pittendrigh may "ultimately lead to some real long-term benefits for Indiana and throughout the world," according to the assistant professor of entomology. Purdue scientists have identified the first gene in lice that kills bacteria that threatens the insect. (Purdue Agricultural Communications photo/Tom Campbell)



In the November issue of the journal Insect Biochemistry & Molecular Biology, Purdue and Harvard university researchers report finding lice genes that control the breakdown of their human blood meal into energy and waste. They also identified the first gene in lice that may impact the insects’ ability to fight off bacterial infections. The study is currently on the journal’s Web site.

"This research eventually may lead to long-term human health benefits for people throughout the world," said Barry Pittendrigh, assistant professor of entomology and senior author of the study. "We need to develop novel strategies for controlling these pests. Body lice raise significant health concerns in developing countries, and head lice afflict children in North America and elsewhere."


Previously only three genes for body and head lice had been described, said Pittendrigh, who also is associated with the Indiana Center for Insect Genomics (ICIG). The researchers screened 1,152 clones of lice genes.

"We found a defensin gene, which is most likely involved with the insect’s immune response to bacterial infections, Pittendrigh said. "Additionally, we found several genes that make proteins, which may cause allergic responses in humans.

"If you have no gene sequences, it’s very difficult to do the next level of experiments to understand interactions between lice and the host."

The scientists used frozen, ground up, engorged body lice to identify genes expressed in lice. Pittendrigh said current knowledge of the insects indicates that body lice and head lice are genetically similar.

The grain-of-rice sized adult body louse is six-legged and usually yellow to white in color. They are found most often on people who don’t practice good hygiene. The lice hide and lay eggs on people’s clothing when not feeding daily on blood.

Head lice are virtually indistinguishable from body lice, but they use hook-like claws to attach themselves to hair shafts on the head. A third type of louse that feeds on humans is the pubic louse.

Body lice inject saliva into the infested person, often causing itching and usually a rash or red bumps on the skin. Scratching the rash can cause infected sores. In certain areas of the world, body lice may transmit fatal diseases such as louse-borne typhus.

Pittendrigh and the lead researcher on the project, Joao Pedra, said understanding lice at the genetic level is critical to developing new methods to prevent infestation. It’s especially important to know the genes and proteins involved in digesting their blood meal and also those genes that provide disease and pesticide resistance.

"This study is the first step in understanding the molecular biology of digestive processes of a medically important pest insect," said Pedra, entomology graduate research assistant.

Other genes Pittendrigh and his team identified are involved in detoxification, iron metabolism and the breakdown of protein within cells.

According to the Centers for Disease Control and Prevention, body lice rarely are found in the United States and other western nations except sometimes on people who don’t have access to bathing facilities. However, they are a major problem in war zones, refugee camps and in areas of natural disasters – anywhere that lacks sanitary conditions and is crowded. These areas also are where outbreaks of lice-borne diseases, such as typhus, relapsing fever and trench fever, are most likely to occur.

Head lice are still a problem throughout the world and are usually found on children rather than adults. They also more frequently infest Caucasians than other races, and more often women than men. Usually only a dozen or fewer active adult head lice are on one person at a time, according to Richard Pollack, of the Harvard University School of Public Health, Department of Immunology and Infectious Diseases and a study co-author.

He said all three types of human lice sometimes can be found on facial hair, and they can all be treated with insecticides, including shampoos containing pyrethroids.

Other species of lice attack animals, such as dogs and cats, but house pets don’t maintain or transmit human lice.

"Current methods of controlling lice are fine, but understanding the molecular biology of lice may lead to novel pest control strategies that may be more cost-effective and cause fewer concerns," Pittendrigh said. "Ten or 15 years from now it would be wonderful if a vaccine is developed to control head lice, resulting in no more head lice problems in schools."

The other Purdue researchers involved in this study are: Amanda Brandt and Hong-Mei Li, of the Department of Entomology; Rick Westerman, of the Purdue Computational Genomics Center (PCGC); Jeanne Romero-Severson, of the PCGC, ICIG and assistant professor in the Department of Forestry and Natural Resources; Larry Murdock, of the Purdue Molecular Plant Resistance and Nematode Team and professor in the Department of Entomology.

Indiana’s 21st Century Research and Technology Fund and the Indiana Center for Insect Genomics provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Barry Pittendrigh, (765) 494-0535, barry_Pittendrigh@entm.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/hp/Pittendrigh.lice.html

More articles from Life Sciences:

nachricht How circadian clocks communicate with each other
30.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>