Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extraterrestrial enigma: missing amino acids in meteorites

04.11.2003


Amino acids have been found in interstellar clouds and in meteorites – but with some enigmatic omissions and tantalizing similarities to life on Earth. Just why some amino acids are present in meteorites and others are absent, and why they seem to prefer the same "left-handed" molecular structure as Earth’s living amino acids are questions that could unravel one of the most fundamental questions of science: Where and how did life begin?



"The bottom line is that you have these materials that come from space," says Steve Macko, professor of environmental sciences at the University of Virginia in Charlottesville. Macko refers specifically to eight of the amino acids found in a certain kind of meteorite – a carbonaceous chondrite. All eight amino acids are identical to those used by life on Earth. That could seem to point to a cosmic origin of these basic biological building blocks, says Macko. The case is bolstered by the fact that early Earth was bombarded with meteorites and the amino acid glycine has been detected on interstellar molecular clouds.

The implications and enigmas of extraterrestrial amino acids will be detailed at a special session celebrating the life and work of the late Glenn Goodfriend, on Monday, Nov. 3, 2003, at the annual meeting of the Geological Society of America in Seattle, WA.


Making the case for cosmic origins of Earth’s amino acids even more compelling is the fact that all of the meteorite amino acids, except glycine, favor the "left-handed" molecular structure, or chirality, that is also favored by life on Earth. The preference for left-handed amino acids was a necessary precondition for life, but just why life chose left (L-amino acids) over right (D-amino acids) is a mystery.

"Essentially all of your protein is made of L-amino acids," said Macko. "Why is that? We don’t know. The curious thing is that if you go to a meteorite you find a predominance of the same thing."

Another unanswered question: Why have only eight of life’s 20 amino acids been found in meteorites? Perhaps all the amino acids were there, but something about the history of the meteorites or the analytical processes used limited their presence or their detection, Macko speculates.

Only in recent years has the idea of amino acids from space affecting the start of life on Earth become a plausible hypothesis, explains Macko. Initially, amino acids were thought to have been created in the primordial atmosphere of early Earth. In a now famous experiment more than a half-century ago, Stanley Miller and Harold Urey showed that amino acids were synthesized by simply creating lightning-like electrical discharges through a fog of water, methane and ammonia – all of which were thought to be readily available in Earth’s early years. The experiment was proof that amino acids, out of which all life’s proteins are made, can be created by strictly physical-chemical processes, without the help of living organisms.

Perhaps the most famous carbonaceous chondrite was the Murchison meteorite, which fragmented and fell in 1969 in and around the small town of Murchison, Victoria, about 70 miles north of Melbourne, Australia. Amino acids and other organic molecules were found in the Murchison meteorite. The mix of amino acids found in the Murchison Meteorite was similar to those produced in Miller-Urey type experiments. A chief difference, however, was seen by Mike Engel in his PhD research: Unlike the Miller-Urey experiment which produced equal amounts of the D and L- amino acids, Murchison tended to have l-amino acids predominate. The fact that the meteorite was seen falling and fragments were collected quickly minimized the chances that they were contaminated by Earth amino acids.

The Miller-Urey experiment, combined with the discovery of amino acids in carbonaceous chondrites and the detection of glycine in molecular clouds, raise compelling issues about the origin of life on Earth, and its possible existence elsewhere in the solar system and beyond.


The Significance of Protein Amino Acids in Carbonaceous Meteorites
Monday, November 3, 5:15 p.m., WSCTC: 606
Abstract may be viewed at:
http://gsa.confex.com/gsa/2003AM/finalprogram/abstract_59831.htm

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org/
http://gsa.confex.com/gsa/2003AM/finalprogram/abstract_59831.htm

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>