Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinct Genes Influence Alzheimer’s Risk at Different Ages

04.11.2003


The genes that influence the risk of developing Alzheimer’s disease may vary over the course of an individual’s lifetime, a new study by Duke University Medical Center researchers finds. The team’s results revealed two chromosomal regions not previously known to influence Alzheimer’s disease: one linked to the disorder in families that first show symptoms early in life and another in families with very late onset of the disorder’s symptoms.


William Scott



While earlier studies have identified genes that underlie early- versus late-onset Alzheimer’s disease, the new study is the first to indicate that distinct genes might also determine the very late onset of Alzheimer’s disease, in which symptoms first appear after the age of 80, said Duke Center for Human Genetics researcher William Scott, Ph.D., the study’s first author.

The team’s findings will appear in the November 2003 issue of The American Journal of Human Genetics. The research was supported by the National Institute on Aging and the Alzheimer’s Association. The study immediately follows another in which the Duke team identified a single gene that influences the age at onset of both Alzheimer’s and Parkinson’s diseases.


Alzheimer’s disease affects up to 4 million Americans and is the most common cause of dementia among people over the age of 65. However, some patients first experience at age 50 the mild forgetfulness characteristic of the disease’s earliest stages; for others, symptoms appear at age 80 or older.

Multiple genes underlie an individual’s risk for Alzheimer’s disease, explained Margaret Pericak-Vance, Ph.D., director of the Duke Center for Human Genetics and leader of the study. Still other genes determine the age at which individuals first show signs of the disorder.

In their study, the team conducted a genomic screen of 437 families in which at least two members had Alzheimer’s disease.

The researchers then applied a novel method of analysis, called "ordered subsets linkage analysis," that allowed them to identify genetic regions linked to Alzheimer’s disease specifically in families that differed in terms of their average age at onset -- without making assumptions about how those age groups should be defined. In contrast, earlier methods have generally lumped people with Alzheimer’s disease into two predefined groups: early and late onset, Scott explained.

The analysis identified a region on chromosome 2 linked to Alzheimer’s disease in families with a minimum age at onset between 50 and 60 years, the researchers reported. The researchers also uncovered a second region, located on chromosome 15, linked to the disorder only in families with a minimum age at onset of 80 years.

A third region on chromosome 9, identified in an earlier genomic screen conducted by the Duke team, was found to influence late onset Alzheimer’s disease in families that experience symptoms between the ages of 60 and 75.

"By including age at onset in our analysis using this new method, we have identified genetic regions that may be associated with Alzheimer’s disease that we wouldn’t have found otherwise," Scott said.

The researchers’ next step will be to apply additional genomic tools to identify candidate genes located in the newly identified chromosomal regions that might influence risk of Alzheimer’s disease.

Elizabeth Hauser, Ph.D., Donald Schmechel, M.D., Kathleen Welsh-Bohmer, Ph.D., John Gilbert, Ph.D., and Jeffery Vance, M.D., all of Duke, also contributed to the study. Additional researchers included Jonathan Haines, Ph.D., of Vanderbilt University Medical Center, Gary Small, M.D., of the University of California, Los Angeles; and Allen Roses, M.D., and Ann Saunders, Ph.D., of GlaxoSmithKline.

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7174
http://www.genomics.duke.edu/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>