Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinct Genes Influence Alzheimer’s Risk at Different Ages

04.11.2003


The genes that influence the risk of developing Alzheimer’s disease may vary over the course of an individual’s lifetime, a new study by Duke University Medical Center researchers finds. The team’s results revealed two chromosomal regions not previously known to influence Alzheimer’s disease: one linked to the disorder in families that first show symptoms early in life and another in families with very late onset of the disorder’s symptoms.


William Scott



While earlier studies have identified genes that underlie early- versus late-onset Alzheimer’s disease, the new study is the first to indicate that distinct genes might also determine the very late onset of Alzheimer’s disease, in which symptoms first appear after the age of 80, said Duke Center for Human Genetics researcher William Scott, Ph.D., the study’s first author.

The team’s findings will appear in the November 2003 issue of The American Journal of Human Genetics. The research was supported by the National Institute on Aging and the Alzheimer’s Association. The study immediately follows another in which the Duke team identified a single gene that influences the age at onset of both Alzheimer’s and Parkinson’s diseases.


Alzheimer’s disease affects up to 4 million Americans and is the most common cause of dementia among people over the age of 65. However, some patients first experience at age 50 the mild forgetfulness characteristic of the disease’s earliest stages; for others, symptoms appear at age 80 or older.

Multiple genes underlie an individual’s risk for Alzheimer’s disease, explained Margaret Pericak-Vance, Ph.D., director of the Duke Center for Human Genetics and leader of the study. Still other genes determine the age at which individuals first show signs of the disorder.

In their study, the team conducted a genomic screen of 437 families in which at least two members had Alzheimer’s disease.

The researchers then applied a novel method of analysis, called "ordered subsets linkage analysis," that allowed them to identify genetic regions linked to Alzheimer’s disease specifically in families that differed in terms of their average age at onset -- without making assumptions about how those age groups should be defined. In contrast, earlier methods have generally lumped people with Alzheimer’s disease into two predefined groups: early and late onset, Scott explained.

The analysis identified a region on chromosome 2 linked to Alzheimer’s disease in families with a minimum age at onset between 50 and 60 years, the researchers reported. The researchers also uncovered a second region, located on chromosome 15, linked to the disorder only in families with a minimum age at onset of 80 years.

A third region on chromosome 9, identified in an earlier genomic screen conducted by the Duke team, was found to influence late onset Alzheimer’s disease in families that experience symptoms between the ages of 60 and 75.

"By including age at onset in our analysis using this new method, we have identified genetic regions that may be associated with Alzheimer’s disease that we wouldn’t have found otherwise," Scott said.

The researchers’ next step will be to apply additional genomic tools to identify candidate genes located in the newly identified chromosomal regions that might influence risk of Alzheimer’s disease.

Elizabeth Hauser, Ph.D., Donald Schmechel, M.D., Kathleen Welsh-Bohmer, Ph.D., John Gilbert, Ph.D., and Jeffery Vance, M.D., all of Duke, also contributed to the study. Additional researchers included Jonathan Haines, Ph.D., of Vanderbilt University Medical Center, Gary Small, M.D., of the University of California, Los Angeles; and Allen Roses, M.D., and Ann Saunders, Ph.D., of GlaxoSmithKline.

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7174
http://www.genomics.duke.edu/

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>