Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinct Genes Influence Alzheimer’s Risk at Different Ages

04.11.2003


The genes that influence the risk of developing Alzheimer’s disease may vary over the course of an individual’s lifetime, a new study by Duke University Medical Center researchers finds. The team’s results revealed two chromosomal regions not previously known to influence Alzheimer’s disease: one linked to the disorder in families that first show symptoms early in life and another in families with very late onset of the disorder’s symptoms.


William Scott



While earlier studies have identified genes that underlie early- versus late-onset Alzheimer’s disease, the new study is the first to indicate that distinct genes might also determine the very late onset of Alzheimer’s disease, in which symptoms first appear after the age of 80, said Duke Center for Human Genetics researcher William Scott, Ph.D., the study’s first author.

The team’s findings will appear in the November 2003 issue of The American Journal of Human Genetics. The research was supported by the National Institute on Aging and the Alzheimer’s Association. The study immediately follows another in which the Duke team identified a single gene that influences the age at onset of both Alzheimer’s and Parkinson’s diseases.


Alzheimer’s disease affects up to 4 million Americans and is the most common cause of dementia among people over the age of 65. However, some patients first experience at age 50 the mild forgetfulness characteristic of the disease’s earliest stages; for others, symptoms appear at age 80 or older.

Multiple genes underlie an individual’s risk for Alzheimer’s disease, explained Margaret Pericak-Vance, Ph.D., director of the Duke Center for Human Genetics and leader of the study. Still other genes determine the age at which individuals first show signs of the disorder.

In their study, the team conducted a genomic screen of 437 families in which at least two members had Alzheimer’s disease.

The researchers then applied a novel method of analysis, called "ordered subsets linkage analysis," that allowed them to identify genetic regions linked to Alzheimer’s disease specifically in families that differed in terms of their average age at onset -- without making assumptions about how those age groups should be defined. In contrast, earlier methods have generally lumped people with Alzheimer’s disease into two predefined groups: early and late onset, Scott explained.

The analysis identified a region on chromosome 2 linked to Alzheimer’s disease in families with a minimum age at onset between 50 and 60 years, the researchers reported. The researchers also uncovered a second region, located on chromosome 15, linked to the disorder only in families with a minimum age at onset of 80 years.

A third region on chromosome 9, identified in an earlier genomic screen conducted by the Duke team, was found to influence late onset Alzheimer’s disease in families that experience symptoms between the ages of 60 and 75.

"By including age at onset in our analysis using this new method, we have identified genetic regions that may be associated with Alzheimer’s disease that we wouldn’t have found otherwise," Scott said.

The researchers’ next step will be to apply additional genomic tools to identify candidate genes located in the newly identified chromosomal regions that might influence risk of Alzheimer’s disease.

Elizabeth Hauser, Ph.D., Donald Schmechel, M.D., Kathleen Welsh-Bohmer, Ph.D., John Gilbert, Ph.D., and Jeffery Vance, M.D., all of Duke, also contributed to the study. Additional researchers included Jonathan Haines, Ph.D., of Vanderbilt University Medical Center, Gary Small, M.D., of the University of California, Los Angeles; and Allen Roses, M.D., and Ann Saunders, Ph.D., of GlaxoSmithKline.

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7174
http://www.genomics.duke.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>