Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Star technology aids DNA analysis


University of Leicester astronomers and biologists have patented a new way of analysing DNA from gene-chips, which may be used in laboratories and hospitals to diagnose diseases from a single drop of blood and compare gene expression in different samples.

The pioneering technique uses an instrument developed at the European Space Agency’s laboratories in Holland for the study of light from distant galaxies to overcome a problem that has previously dogged gene-chip research.

Gene chips are covered with DNA from thousands of genes, which bind with matching genetic sequences when a sample is poured onto them. Fluorescent tags show where binding has taken place and therefore which genes are active.

Samples have to be tested at the same time and on the same chip, and it is the limitations of the colour coding of these different samples which the new technology has revolutionised.

Biologist Professor Pat Heslop-Harrison, with fellow biologist Dr Trude Schwarzacher and astronomers Professor George Fraser and Dr Andrew Holland, have adapted the space research techniques which use properties of superconductivity and association of electrons at temperatures close to absolute zero to analyse the faint light from areas in the early universe.

The device, known as the superconducting tunnel junction camera (S-cam), allows them to compare accurately four biological samples and they hope to be able to compare seven or more samples in the future.

Professor Heslop-Harrison commented: “We have been looking for better quantitative methods to measure both colour and brightness from multiple probes put onto our biological samples. The new development is unique in measuring colour without filters, gratings or other systems which lose sensitivity and don’t have the colour resolution we need. It looks as though the S-cam will overcome many of the difficulties in measuring data from gene chips so they can reach their full potential as diagnostic and research tools.”

Professor George Fraser added: “The Space Research Centre has been active in transferring detector technologies into the life sciences and medicine for several years, but this is a development with much greater potential than those we have worked on previously. The technical challenges are also the most severe.”

Further information is available from

Professor Pat Heslop-Harrison
Department of Biology, University of Leicester
Tel. 0116 252 5079/3381
Fax 0116 252 2791

or from Professor George Fraser
Space Research Centre, University of Leicester
Tel 0116 252 3542, Fax 0116 252 2464

Ather Mirza | University of Leicester
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>