Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star technology aids DNA analysis

04.11.2003


University of Leicester astronomers and biologists have patented a new way of analysing DNA from gene-chips, which may be used in laboratories and hospitals to diagnose diseases from a single drop of blood and compare gene expression in different samples.

The pioneering technique uses an instrument developed at the European Space Agency’s laboratories in Holland for the study of light from distant galaxies to overcome a problem that has previously dogged gene-chip research.

Gene chips are covered with DNA from thousands of genes, which bind with matching genetic sequences when a sample is poured onto them. Fluorescent tags show where binding has taken place and therefore which genes are active.



Samples have to be tested at the same time and on the same chip, and it is the limitations of the colour coding of these different samples which the new technology has revolutionised.

Biologist Professor Pat Heslop-Harrison, with fellow biologist Dr Trude Schwarzacher and astronomers Professor George Fraser and Dr Andrew Holland, have adapted the space research techniques which use properties of superconductivity and association of electrons at temperatures close to absolute zero to analyse the faint light from areas in the early universe.

The device, known as the superconducting tunnel junction camera (S-cam), allows them to compare accurately four biological samples and they hope to be able to compare seven or more samples in the future.

Professor Heslop-Harrison commented: “We have been looking for better quantitative methods to measure both colour and brightness from multiple probes put onto our biological samples. The new development is unique in measuring colour without filters, gratings or other systems which lose sensitivity and don’t have the colour resolution we need. It looks as though the S-cam will overcome many of the difficulties in measuring data from gene chips so they can reach their full potential as diagnostic and research tools.”

Professor George Fraser added: “The Space Research Centre has been active in transferring detector technologies into the life sciences and medicine for several years, but this is a development with much greater potential than those we have worked on previously. The technical challenges are also the most severe.”

Further information is available from

Professor Pat Heslop-Harrison
Department of Biology, University of Leicester
Tel. 0116 252 5079/3381
Fax 0116 252 2791
E-mail: phh4@le.ac.uk

or from Professor George Fraser
Space Research Centre, University of Leicester
Tel 0116 252 3542, Fax 0116 252 2464
E-mail: gwf@star.le.ac.ukgwf@star.le.ac.uk

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>