Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star technology aids DNA analysis

04.11.2003


University of Leicester astronomers and biologists have patented a new way of analysing DNA from gene-chips, which may be used in laboratories and hospitals to diagnose diseases from a single drop of blood and compare gene expression in different samples.

The pioneering technique uses an instrument developed at the European Space Agency’s laboratories in Holland for the study of light from distant galaxies to overcome a problem that has previously dogged gene-chip research.

Gene chips are covered with DNA from thousands of genes, which bind with matching genetic sequences when a sample is poured onto them. Fluorescent tags show where binding has taken place and therefore which genes are active.



Samples have to be tested at the same time and on the same chip, and it is the limitations of the colour coding of these different samples which the new technology has revolutionised.

Biologist Professor Pat Heslop-Harrison, with fellow biologist Dr Trude Schwarzacher and astronomers Professor George Fraser and Dr Andrew Holland, have adapted the space research techniques which use properties of superconductivity and association of electrons at temperatures close to absolute zero to analyse the faint light from areas in the early universe.

The device, known as the superconducting tunnel junction camera (S-cam), allows them to compare accurately four biological samples and they hope to be able to compare seven or more samples in the future.

Professor Heslop-Harrison commented: “We have been looking for better quantitative methods to measure both colour and brightness from multiple probes put onto our biological samples. The new development is unique in measuring colour without filters, gratings or other systems which lose sensitivity and don’t have the colour resolution we need. It looks as though the S-cam will overcome many of the difficulties in measuring data from gene chips so they can reach their full potential as diagnostic and research tools.”

Professor George Fraser added: “The Space Research Centre has been active in transferring detector technologies into the life sciences and medicine for several years, but this is a development with much greater potential than those we have worked on previously. The technical challenges are also the most severe.”

Further information is available from

Professor Pat Heslop-Harrison
Department of Biology, University of Leicester
Tel. 0116 252 5079/3381
Fax 0116 252 2791
E-mail: phh4@le.ac.uk

or from Professor George Fraser
Space Research Centre, University of Leicester
Tel 0116 252 3542, Fax 0116 252 2464
E-mail: gwf@star.le.ac.ukgwf@star.le.ac.uk

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>