Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers build microfluidic devices using principles of electronic integration


Advances in development of lab-on-chip devices, which shrink and potentially simplify laboratory tests like DNA analysis, have largely been tempered by the inherent complexity of the systems they are trying to replace. DNA analysis usually requires a laboratory full of instruments and several days to obtain results.

But now a team of researchers at Arizona State University report that they have made several advances in the area of microfluidic component design, fabrication and integration, bringing the technology to the point where DNA analysis could be done simply and in significantly less time than required today. The researchers are borrowing their ideas from what has become the king of small-scale integration – microelectronic integrated circuits (IC).

"We’ve basically taken some of the primary ideas of electronic integration and applied them to microfluidic devices. This new platform is called microfluidic IC," said Robin Liu, project manager at the Center for Applied Nano-Bioscience (ANBC) at the Arizona Bio Design Institute. "The novelty here is instead of having electrons flow between electronic chips, with microfluidics we have very tiny amounts of fluid moving between chips."

Liu and his colleagues detail their research findings in an article, "Development of integrated microfluidic system for genetic analysis." The article is the cover story of the October 2003 SPIE Journal of Microlithography, Microfabrication and Microsystems.

Liu said the advantages of integrated microfluidic devices include being able to build sophisticated devices from relatively simple parts, modularity of components, standardization of microfluidic chips and the ability to plug in and unplug specific parts of an overall system.

"Traditionally, every time you change the bioassay procedure in a microfluidic device, you have to redesign a whole chip," he explained. "This complicates everything, because then the fabrication process has to be changed, the integration has to be changed, the design has to be changed, everything has to be changed.

"Using an integrated circuit approach, we can exchange one of the components simply by unplugging it and plugging in a different one to achieve different functionalities of the overall system," Liu said. "It is a very flexible platform and any time you need to change the assay (a specific test) or you need to change the reactions, you just unplug the module and plug in a different module."

The article describes several approaches to the integration of complex functionalities in microfluidics. They include development of micromixers, microvalves, cell capture, micro polymerase chain reaction devices and new methods for making intricate, minute parts out of plastics.

But it is the integration, the bringing together of these disparate parts, to work in one overall, yet minute operating system, that is the most important advance, Liu said.

"From an integrations standpoint this simplifies assembly," he said. "Instead of putting every component onto a single device, one chip can be a microvalve, one chip can be a micropump. We actually build the overall system by assembling the pieces.

"Hopefully, this will be the standard procedure for microfluidics in the future," he added. "Just like the integrated circuit is the standard for microelectronics."

The end result would be a microfluidic device that can dramatically simplify some laboratory analysis procedures. For example, such a microfluidic device could be used to provide direct sample-to-answer analysis of DNA samples. That is, a lab technician would put a patient’s blood in one end of the device and it would provide DNA data (in hours or minutes instead of days) showing if the patient has a certain disease, cancer or HIV.

Such a fully integrated device would require no external pressure sources, fluid storage, mechanical pumps, or valves that are necessary for fluid manipulation, eliminating possible sample contamination and simplifying device operation. This device provides a cost effective solution to direct sample-to-answer genetic analysis, and thus has potential impact in the fields of rapid disease diagnostics, environmental testing and biological warfare detection.

ANBC, led by Frederic Zenhausern, applies advances in microfluidic technology to integrate all the necessary steps of nucleic acid analysis to enable molecular diagnostic systems. For example, ANBC is partnering with the Mayo Clinic, and IBM Life Sciences and the Translational Genomics Research Institute, to develop an integrated "nano-genomic" device for melanoma studies.

Robin Liu, 480-727-8168,

Skip Derra | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>