Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers build microfluidic devices using principles of electronic integration

31.10.2003


Advances in development of lab-on-chip devices, which shrink and potentially simplify laboratory tests like DNA analysis, have largely been tempered by the inherent complexity of the systems they are trying to replace. DNA analysis usually requires a laboratory full of instruments and several days to obtain results.



But now a team of researchers at Arizona State University report that they have made several advances in the area of microfluidic component design, fabrication and integration, bringing the technology to the point where DNA analysis could be done simply and in significantly less time than required today. The researchers are borrowing their ideas from what has become the king of small-scale integration – microelectronic integrated circuits (IC).

"We’ve basically taken some of the primary ideas of electronic integration and applied them to microfluidic devices. This new platform is called microfluidic IC," said Robin Liu, project manager at the Center for Applied Nano-Bioscience (ANBC) at the Arizona Bio Design Institute. "The novelty here is instead of having electrons flow between electronic chips, with microfluidics we have very tiny amounts of fluid moving between chips."


Liu and his colleagues detail their research findings in an article, "Development of integrated microfluidic system for genetic analysis." The article is the cover story of the October 2003 SPIE Journal of Microlithography, Microfabrication and Microsystems.

Liu said the advantages of integrated microfluidic devices include being able to build sophisticated devices from relatively simple parts, modularity of components, standardization of microfluidic chips and the ability to plug in and unplug specific parts of an overall system.

"Traditionally, every time you change the bioassay procedure in a microfluidic device, you have to redesign a whole chip," he explained. "This complicates everything, because then the fabrication process has to be changed, the integration has to be changed, the design has to be changed, everything has to be changed.

"Using an integrated circuit approach, we can exchange one of the components simply by unplugging it and plugging in a different one to achieve different functionalities of the overall system," Liu said. "It is a very flexible platform and any time you need to change the assay (a specific test) or you need to change the reactions, you just unplug the module and plug in a different module."

The article describes several approaches to the integration of complex functionalities in microfluidics. They include development of micromixers, microvalves, cell capture, micro polymerase chain reaction devices and new methods for making intricate, minute parts out of plastics.

But it is the integration, the bringing together of these disparate parts, to work in one overall, yet minute operating system, that is the most important advance, Liu said.

"From an integrations standpoint this simplifies assembly," he said. "Instead of putting every component onto a single device, one chip can be a microvalve, one chip can be a micropump. We actually build the overall system by assembling the pieces.

"Hopefully, this will be the standard procedure for microfluidics in the future," he added. "Just like the integrated circuit is the standard for microelectronics."

The end result would be a microfluidic device that can dramatically simplify some laboratory analysis procedures. For example, such a microfluidic device could be used to provide direct sample-to-answer analysis of DNA samples. That is, a lab technician would put a patient’s blood in one end of the device and it would provide DNA data (in hours or minutes instead of days) showing if the patient has a certain disease, cancer or HIV.

Such a fully integrated device would require no external pressure sources, fluid storage, mechanical pumps, or valves that are necessary for fluid manipulation, eliminating possible sample contamination and simplifying device operation. This device provides a cost effective solution to direct sample-to-answer genetic analysis, and thus has potential impact in the fields of rapid disease diagnostics, environmental testing and biological warfare detection.


ANBC, led by Frederic Zenhausern, applies advances in microfluidic technology to integrate all the necessary steps of nucleic acid analysis to enable molecular diagnostic systems. For example, ANBC is partnering with the Mayo Clinic, and IBM Life Sciences and the Translational Genomics Research Institute, to develop an integrated "nano-genomic" device for melanoma studies.

Source:
Robin Liu, 480-727-8168, Hui.Liu.4@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>