Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model of Alzheimer’s, other diseases may clarify steps of brain degeneration

30.10.2003


A new mouse model developed by Harvard Medical School researchers and reported in the October 30 Neuron may allow scientists for the first time to spotlight two key proteins in a living animal and see how they contribute to the neuronal death and atrophy found in neurodegenerative diseases. The two proteins are dubbed p25 and cyclin-dependent kinase 5 (Cdk5).



"This is an excellent animal model for any therapeutic approach toward p25 and its link to Alzheimer’s and similar neurodegenerative diseases," says Li-Huei Tsai, HMS professor of pathology and Howard Hughes Medical Institute associate investigator, the study’s lead author. "We know that p25 causes neurodegeneration, and we want to figure out how that mechanism works."

The new model is the latest in Cdk5 research from the lab of Li-Huei Tsai. Over the past nine years, Tsai and her colleagues have defined many of Cdk5’s functions and noted the role its usual regulator p35 plays in orienting neuronal migration and growth. Their latest challenge is deciphering how Cdk5 and the pernicious regulator p25 lead to neurodegenerative diseases.


The protein p25 is usually not found in healthy brains, but is formed when a stroke or another oxygen-restricting event cuts p35--a beneficial protein found in healthy brains--to form p25, starting a domino effect that leads to neuronal death and malformation. Once present, p25 activates Cdk5 and alters its normally constructive behavior to kill neurons. To make matters worse, p25 is longer-lived than p35, so it accumulates in the brain and continues to keep Cdk5 active. Overactive Cdk5 and accumulated p25 have been noted in the brain tissue of people with the neurodegenerative diseases Alzheimer’s and Niemann–Pick type C. But the lack of a mouse model prevented researchers from demonstrating in vivo the effects of Cdk5 and p25 in the brain.

Tsai’s model exhibits the two characteristics researchers want to study: profound neuronal death and tau-associated degeneration. Some forms of the tau protein are associated with neurodegenerative diseases. In the model, Tsai turns on the production of p25 when the mice are mature. The mice were created with a gene that overproduces p25, but this gene is inhibited in the presence of the chemical doxycycline. The mice were conceived and raised for four to six weeks on doxycycline, which allowed their brains to develop normally. Once the mice were mature, Tsai turned on the p25 gene by removing doxycycline from their food.

Tsai’s model produces the results she expected. The mouse brains show a high accumulation of p25, substantial atrophy, progressive neuronal loss and tau pathology. After only 12 weeks of p25 exposure, the mouse brains were disintegrating, with a 40 percent decrease in neuronal density. By 30 weeks after p25 induction, the aggregation of tau proteins caused neurofibrillary tangles in the brain, a symptom of Alzheimer’s disease. The brains also showed neurodegeneration and neuronal cell death similar to earlier in vitro work.

Other labs have created mouse models that overproduce p25 throughout their lives, but these models fail to exhibit high brain cell p25 levels and neuronal death. Tsai explains that mice in these earlier models may have found a way to cope with the overexpression of toxic p25 during development, thereby lowering the accumulated p25 levels in their brains. These p25 levels may not have reached the threshold to induce the neuronal death and substantial tau pathology associated with aberrant p25. Without the high levels of accumulated p25 or evidence of neuronal death, these mice are not useful as models of neurodegeneration.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu/
http://www.hms.harvard.edu/news/index.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>