Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers discover molecular signaling system controlling aspects of embryonic development

29.10.2003


Identification of ’Jelly Belly’ gene may lead to new drugs to combat heart disease, cancer and neurological disorders



Researchers at Oregon Health & Science University (OHSU) have identified a secreted signaling protein that regulates smooth muscle development in fruit flies. In the absence of a protein called "Jelly Belly (Jeb)," primitive smooth muscle cells fail to migrate or differentiate, according to study results published in the October 2 issue of Nature.
"Our research shows that Jelly Belly is required for the normal development of the smooth muscle that surrounds the gut in flies and we are investigating it in the arteries of mammals. It is also related to the development of heart muscle," said Joseph B. Weiss M.D., Ph.D., principal investigator and assistant professor (molecular medicine and cardiology), and Heart Research Center scientist in the OHSU School of Medicine.

Smooth muscles are involved in involuntary but essential functions, such as digestion and control of blood flow. Unlocking the genetic mechanisms controlling their embryonic development may allow scientists to understand better what triggers their abnormal growth. Human disorders that are linked to abnormal smooth muscle growth or function include high blood pressure, arteriosclerosis and congenital heart defects.



"Weiss has discovered a link in the chain of events that signals primitive cells in the fruit fly embryo to become muscle cells. The findings are key to our quest to identify embryonic genes that are linked to cardiac diseases," said Kent L. Thornburg, Ph.D., professor of medicine (cardiology) and director of the OHSU Heart Research Center. Molecules in fruit flies are functionally similar to molecules in humans typically allowing discoveries in fruit fly biology to be extrapolated to humans. Weiss’s findings also illuminate an aspect of how embryonic cells organize themselves into the complex body plans observed across the animal world, including humans. At the embryonic stage, identical primitive cells somehow "choose" a path that determines their biological destiny, specifying the organ or tissue they will ultimately become. While scientists have long known that signals exchanged between cells control this process, little is known about the intricacies of these developmental systems.

This research showed that the Jeb protein controls the choice of certain embryonic cells between two fates. The cells that receive the Jeb signal become "founder cells" that function as pioneers to organize the development of smooth muscle. Cells that do not get the Jeb signal become "fusion cells" that attach to and fuse with founder cells to augment muscle mass.

This work established the essential signaling role of the Jeb protein. However, the identity of the molecular "Jeb-sensor" remained unknown. Finding this receptor was crucial to provide the complete molecular foundation needed for developing new drugs.

"Receptor and signal pairs are ideal targets for medicines because this is where human biology gets very specific. Identifying the players allows us to design drugs targeted at a precise molecular interaction. These types of drugs tend to have the maximum therapeutic impact with the fewest side effects," said Weiss.

Previous independent studies had identified a cell-surface receptor protein called anaplastic lymphoma kinase (Alk) in the late 1990s. All that was known about human Alk was that it could cause lymphoma if abnormally regulated; its normal function had not been determined.

After initial publication of Weiss’s research on Jeb, scientists at New York’s Mt. Sinai School of Medicine observed that the published expressions of Alk and Jeb appeared compatible and hypothesized that Jeb could be the protein that activates the Alk receptor. Subsequent collaborative studies between OHSU and Mt. Sinai researchers in fruit flies confirmed this hypothesis.

In addition to identifying a central signaling pathway for smooth muscle development, these collaborative results have expanded the clinical applications of Weiss’s initial research. Given the role of Alk in cancer, Weiss speculates that other tumors caused by abnormal regulation of Jeb-like activators pf Alk, would respond to drugs that target the interaction between Jeb and Alk.

Further, other studies suggest that the Jeb-Alk signaling pathway may also be important in adults. So far, Weiss and colleagues have found the Jeb protein in adult neurons, hinting that this signaling mechanism may play an essential role in neurological function. Already, an independent study has found a Jeb-like molecule in an adult worm (C. elegans), which appears to play a role in learning and memory.

"The same molecules that regulate growth and development in embryos can be expected to play a role in adaptive functions in the adult," said Weiss.

Weiss is currently conducting research to determine the possible role of Jeb in the function of the normal nervous system and, by comparison, the role of the Jeb-Alk signaling mechanism in adult neurological disorders.


Weiss’s research is funded in part by the National Institutes of Health/National Heart, Lung and Blood Institute, Howard Hughes Medical Institute and the American Heart Association.

Christine Pashley | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>