Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive cancer killer’s deep-sea hideout discovered after a nearly 20-year hunt

28.10.2003


In 1984, HARBOR BRANCH scientists exploring deep waters off the Bahamas in one of the institution’s Johnson-Sea-Link submersibles discovered a small piece of sponge that harbored a chemical with a remarkable ability to kill cancer cells in laboratory tests. Despite almost two decades of searching, though, the group was never able to find enough of the sponge to fully explore its potential. But now that process can finally begin because, thanks to some creative detective work, the team has found the animal’s secret hiding place and collected enough of it to support years of intense research.


The Johnson-Sea-Link I submersible, used to collect the promising sponge
Credit: HARBOR BRANCH


Amy Wright,director of Harbor Branch Biomedical Marine Research (right) and Shirley Pomponi, Harbor Branch vice-president and director of research, aboard the R/V Seward Johnson II sorting samples after a drug discovery submersible dive.
Credit: HARBOR BRANCH



"It’s just amazing," says Amy Wright, director of HARBOR BRANCH Biomedical Marine Research, of the sponge she has been on a career-long quest to find. "This is our next cure, I know it’s our next cure."

A chemical produced within the sponge, which has not yet been given an official name, has proven in one test of cancer-fighting potential to be about 400 times more potent than Taxol®, a widely used treatment for breast and other forms of cancer. As important, preliminary experiments have also shown the compound to be fairly non-toxic to normal cells.


But the limited amount of the sponge initially collected was not enough to carry the team through the long process of developing a potential medical treatment, which involves careful study of exactly how a chemical kills cancer cells and of its chemical structure. "Since 1984 it has been on our target list for every dive," says Wright, who first studied the compound as a postdoctoral fellow at HARBOR BRANCH during the ’80s.

On various expeditions over the years, scientists found only tiny pieces of the sponge, then last year two slightly larger pieces, but still they did not have enough to do the required research. So, in preparation for a cruise this year to the Bahamas that ran from Oct. 9 through the 24th, Wright and her team used clues from where each piece had been collected to put together a profile of the habitat where it must live.

The technique worked perfectly, and on the first submersible dive targeting an area that fit the profile, they found the sponge. "You know, you have these hypotheses, but when it is actually there, it just floors you that the hypothesis worked," says Wright, "We were really excited. I was just dancing around."

The sponge was found in water over 1,000 feet deep in an area the researchers often refer to as the "dead zone," because it is generally characterized by bare rock and very low biodiversity. The sponge, which can grow to about the size of a softball, had eluded researchers for so long because they generally avoid this area in favor of exploring more diverse habitats.

Wright predicts that the quantity of the sponge collected on the expedition using the submersible should be enough to carry the team through the full multi-year drug discovery process, possibly even to the first phase of human trials. "I never thought I would see that much of the sponge ever," says Wright, "Now we have enough to move forward."

If the chemical continues to show promise as the research process progresses, it would eventually be licensed to a pharmaceutical company, which would take the compound through clinical trials. A key step before that could happen would be for HARBOR BRANCH and its collaborators to develop a method to sustainably produce the chemical without having to collect it from wild sponges, which would be both economically and ecologically unfeasible. Possible methods would be raising the sponge through aquaculture, producing it synthetically, or, if the chemical turns out to be produced by a microorganism within the sponge, raising cultures of that microorganism. The full process of turning the chemical into a commercially available cancer treatment would likely take more than a decade.

The mystery sponge’s hideout was found on an expedition to the Bahamas that covered some 1,300 miles and took the team throughout the island chain almost as far south as the Turks and Caicos Islands. For more information about this expedition as well as background articles on the team’s research, please visit HARBOR BRANCH’s online expedition site at: http://www.at-sea.org

HARBOR BRANCH has already patented nearly a hundred potential pharmaceuticals from the tens of thousands of the organisms the Biomedical Marine Research group has collected since the ’80s at sites around the globe. Several of these are in various stages of development as potential commercial drugs. Discodermolide, a compound produced by a deepwater sponge found in the Bahamas, is currently in the first phase of human trials as a cancer treatment.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>