Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive cancer killer’s deep-sea hideout discovered after a nearly 20-year hunt

28.10.2003


In 1984, HARBOR BRANCH scientists exploring deep waters off the Bahamas in one of the institution’s Johnson-Sea-Link submersibles discovered a small piece of sponge that harbored a chemical with a remarkable ability to kill cancer cells in laboratory tests. Despite almost two decades of searching, though, the group was never able to find enough of the sponge to fully explore its potential. But now that process can finally begin because, thanks to some creative detective work, the team has found the animal’s secret hiding place and collected enough of it to support years of intense research.


The Johnson-Sea-Link I submersible, used to collect the promising sponge
Credit: HARBOR BRANCH


Amy Wright,director of Harbor Branch Biomedical Marine Research (right) and Shirley Pomponi, Harbor Branch vice-president and director of research, aboard the R/V Seward Johnson II sorting samples after a drug discovery submersible dive.
Credit: HARBOR BRANCH



"It’s just amazing," says Amy Wright, director of HARBOR BRANCH Biomedical Marine Research, of the sponge she has been on a career-long quest to find. "This is our next cure, I know it’s our next cure."

A chemical produced within the sponge, which has not yet been given an official name, has proven in one test of cancer-fighting potential to be about 400 times more potent than Taxol®, a widely used treatment for breast and other forms of cancer. As important, preliminary experiments have also shown the compound to be fairly non-toxic to normal cells.


But the limited amount of the sponge initially collected was not enough to carry the team through the long process of developing a potential medical treatment, which involves careful study of exactly how a chemical kills cancer cells and of its chemical structure. "Since 1984 it has been on our target list for every dive," says Wright, who first studied the compound as a postdoctoral fellow at HARBOR BRANCH during the ’80s.

On various expeditions over the years, scientists found only tiny pieces of the sponge, then last year two slightly larger pieces, but still they did not have enough to do the required research. So, in preparation for a cruise this year to the Bahamas that ran from Oct. 9 through the 24th, Wright and her team used clues from where each piece had been collected to put together a profile of the habitat where it must live.

The technique worked perfectly, and on the first submersible dive targeting an area that fit the profile, they found the sponge. "You know, you have these hypotheses, but when it is actually there, it just floors you that the hypothesis worked," says Wright, "We were really excited. I was just dancing around."

The sponge was found in water over 1,000 feet deep in an area the researchers often refer to as the "dead zone," because it is generally characterized by bare rock and very low biodiversity. The sponge, which can grow to about the size of a softball, had eluded researchers for so long because they generally avoid this area in favor of exploring more diverse habitats.

Wright predicts that the quantity of the sponge collected on the expedition using the submersible should be enough to carry the team through the full multi-year drug discovery process, possibly even to the first phase of human trials. "I never thought I would see that much of the sponge ever," says Wright, "Now we have enough to move forward."

If the chemical continues to show promise as the research process progresses, it would eventually be licensed to a pharmaceutical company, which would take the compound through clinical trials. A key step before that could happen would be for HARBOR BRANCH and its collaborators to develop a method to sustainably produce the chemical without having to collect it from wild sponges, which would be both economically and ecologically unfeasible. Possible methods would be raising the sponge through aquaculture, producing it synthetically, or, if the chemical turns out to be produced by a microorganism within the sponge, raising cultures of that microorganism. The full process of turning the chemical into a commercially available cancer treatment would likely take more than a decade.

The mystery sponge’s hideout was found on an expedition to the Bahamas that covered some 1,300 miles and took the team throughout the island chain almost as far south as the Turks and Caicos Islands. For more information about this expedition as well as background articles on the team’s research, please visit HARBOR BRANCH’s online expedition site at: http://www.at-sea.org

HARBOR BRANCH has already patented nearly a hundred potential pharmaceuticals from the tens of thousands of the organisms the Biomedical Marine Research group has collected since the ’80s at sites around the globe. Several of these are in various stages of development as potential commercial drugs. Discodermolide, a compound produced by a deepwater sponge found in the Bahamas, is currently in the first phase of human trials as a cancer treatment.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>