Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study identifies stem cell in artery wall

28.10.2003


A UCLA study demonstrates for the first time that specific cells found in the adult artery wall have stem cell-like potential. Researchers found artery cells that change into cartilage, bone, muscle and marrow stromal cells.



The new study will be published online on Oct. 27 and will appear in an upcoming print issue of the journal Circulation. The study may lead to a new source of adult stem cells, which may increase potential treatment options and avoid the controversial use of fetal stem cells.

"This is the first study to show that cells in the artery wall have the potential to develop into a number of other cell types," said Dr. Linda Demer, principal investigator, Guthman Professor of Medicine and Physiology, and vice chair for cardiovascular and vascular medicine at the David Geffen School of Medicine at UCLA.


UCLA researchers also report that the artery wall cells, called calcifying vascular cells (CVC), are the only cells other than actual bone marrow stromal cells that support survival of immature (developing) blood cells. This finding may have future applications in reconstitution of bone marrow after cancer treatment.

UCLA researchers cultured bovine CVC artery wall cells in the lab to see if the cells would turn into bone, fat, cartilage, marrow and muscle cells. They checked for expression of proteins and tissue matrix characteristic of each cell type.

"We wanted to see if CVC cells would become specific cell types that actually produce their own characteristic matrix (mortar-like) substance. For example, if the cell actually produced bone mineral, it would indicate that the cell had taken on a bone identity," said first author Yin Tintut, Division of Cardiology at the David Geffen School of Medicine at UCLA.

Researchers found that CVC cells had the potential to become several cell types, including bone, cartilage, marrow stromal and muscle cells, but not adipogenic, or fat, cells. Demer suggests this indicates that the CVC cells may not have the entire range of conventional stem cells. However, this may be especially useful in cases where one would not want the stem cell turning into a fat cell -- such as in trying to regenerate cartilage.

The next step involves "assessing CVC cells’ potential to follow other lineages and also testing human cells," Demer said.

Stem cells are young, uncommitted cells with the ability to regenerate more stem cells and to differentiate into a variety of cell types. Researchers can then grow cells in the lab and program them to make specific tissue that may be used to repair damaged tissues such as in reconstructive surgery.

Two institutes that are part of the National Institutes of Health funded the study: the National Heart, Lung and Blood Institute, and the National Institute of Arthritis, Musculoskeletal and Skin Diseases.

Other researchers include Zeni Alfonso from the UCLA department of urology; and Trishal Saini, Kristen Radcliff, Dr. Karol Watson and Dr. Kristina Boström from the UCLA department of medicine.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>