Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified gene may halt fuzzy, moldy fruit

27.10.2003


An insidious fuzzy gray mold that often coats refrigerated strawberries and many other plants during growing and storage may be prevented by a gene identified by a Purdue University researcher.


Purdue researcher Tesfaye Mengiste has identified the gene responsible for causing a fuzzy, gray mold that attacks fruits, such as strawberries and tomatoes. Mengiste, an assistant professor in the botany and plant pathology department, says gray mold disease destroys about 25 percent of the tomato and strawberry crop during some seasons. (Purdue University photo by Tom Campbell)



The mold is caused by a fungus, Botrytis cinerea, that often enters plant tissue through wounded or dead areas such as wilted petals, bruised fruit or at the site of pruning. In the November issue of the journal The Plant Cell, Purdue plant molecular biologist Tesfaye Mengiste and his colleagues at Syngenta Biotechnology Inc. report that the gene, called BOS1, is the first protein identified that regulates plant response to both biological and non-biological stresses.

"Botrytis affects many important crops in the field, in the greenhouse and in post-harvest situations," said Mengiste, an assistant professor in the Department of Botany and Plant Pathology. "It attacks flowers, fruits, vegetables, bulbs, leaves and stems. It has a tremendous capacity to inflict disease and eventually cause loss of quality and yield."


The scientists found the gene by sorting through mutations of the common laboratory research plant Arabidopsis. By studying altered plants that were highly susceptible to Botrytis, the researchers pinpointed the resistance gene, BOS1.

Once Mengiste and his team found the gene, they were able to show that it does more than restrict the growth of the pathogen. BOS1also protects the plant from stresses, such as drought and soil salinity. These stresses are called abiotic stresses. Pathogens and pests create biotic stresses.

Gray mold disease destroys about 10 percent of the grape crop annually and about 25 percent to 30 percent of tomato and strawberry crops in some seasons, experts report. It also infects many varieties of flowers including petunias, geraniums and chrysanthemums.

"The major control for most of these pathogens now is application of fungicides," Mengiste said." But there are environmental pollution and health concerns connected with their use. Also, Botrytis builds up genetic resistance to fungicides that are used frequently.

"The most cost-effective and environmentally sound approach to preventing this disease is through genetic resistance. If we can use the same gene we found in Arabidopsis in other plants that are hosts of Botrytis, then BOS1 can be utilized to prevent this fungus and other similar plant diseases."

Cool, humid weather fosters the fungus. That’s why the mold often appears on strawberries and raspberries stored in your refrigerator’s fruit and vegetable drawer.

Because spores spread Botrytis, one infected piece of fruit or plant will infect nearby plants. The fungus can start in healthy plant tissue but most often begins in dead leaves or petals that have fallen to the ground. Botrytis can live through the winter in a dormant state and then attack new growth in the spring.

Because of the pathogen’s ability to spread easily and kill a whole plant, researchers tested single mutant Arabidopsis leaves to learn the susceptibility. The scientists inoculated a single leaf with a mixture containing Botrytis spores and then removed the leaves from the plant so individual plants would survive for further testing. This allowed them to determine which gene halted the fungus’ invasion.

"We want to understand how plants resist Botrytis, what biological events occur when plants perceive that this fungus or other necrotrophic pathogens are present," Mengiste said.

Botrytis is a necrotrophic pathogen, meaning it obtains nutrients from dead cells. That is why the fungus kills the plant cell or invades through injured or dead parts of plants. Once it enters dead areas, it begins killing other parts of the plant, resulting in plant decay.

"If we can identify these genes, then they can be used to expedite plant breeding for resistance to Botrytis and other similar diseases," Mengiste said.

In learning how to prevent necrotrophic pathogens, the researchers face a problem because biotropic pathogens also attack plants. These are pathogens that feed on live cells. Some plants actually kill their own cells at the site where a biotrophic pathogen is trying to invade in an effort to combat the threat.

"The methods that work to protect against biotrophic pathogens may actually promote necrotrophic pathogens," Mengiste said.

But he said he believes understanding the molecular workings of plants’ natural methods of fighting off disease is the best way to overcome pathogens.

The BOS1gene appears to control other genes and seems to provide resistance to several types of stresses. In other words, it controls a number of different genes or proteins in a molecular pathway that determines whether a plant overcomes adversity.

"In terms of biotechnology and improvements of both agricultural and horticultural plants through molecular approaches, it’s important that this gene is a regulatory protein because it means you can just alter it so there is more or less of it. An alteration of the gene then can control multiple genes further down the pathway," he said.

"This way we could increase yield and quality of some plants depending on the conditions and/or diseases that may affect them."

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Tesfaye Mengiste, (765) 494-0599, mengiste@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://www.usda.gov/
http://news.uns.purdue.edu/html4ever/031023.Mengiste.graymold.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>