Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified gene may halt fuzzy, moldy fruit

27.10.2003


An insidious fuzzy gray mold that often coats refrigerated strawberries and many other plants during growing and storage may be prevented by a gene identified by a Purdue University researcher.


Purdue researcher Tesfaye Mengiste has identified the gene responsible for causing a fuzzy, gray mold that attacks fruits, such as strawberries and tomatoes. Mengiste, an assistant professor in the botany and plant pathology department, says gray mold disease destroys about 25 percent of the tomato and strawberry crop during some seasons. (Purdue University photo by Tom Campbell)



The mold is caused by a fungus, Botrytis cinerea, that often enters plant tissue through wounded or dead areas such as wilted petals, bruised fruit or at the site of pruning. In the November issue of the journal The Plant Cell, Purdue plant molecular biologist Tesfaye Mengiste and his colleagues at Syngenta Biotechnology Inc. report that the gene, called BOS1, is the first protein identified that regulates plant response to both biological and non-biological stresses.

"Botrytis affects many important crops in the field, in the greenhouse and in post-harvest situations," said Mengiste, an assistant professor in the Department of Botany and Plant Pathology. "It attacks flowers, fruits, vegetables, bulbs, leaves and stems. It has a tremendous capacity to inflict disease and eventually cause loss of quality and yield."


The scientists found the gene by sorting through mutations of the common laboratory research plant Arabidopsis. By studying altered plants that were highly susceptible to Botrytis, the researchers pinpointed the resistance gene, BOS1.

Once Mengiste and his team found the gene, they were able to show that it does more than restrict the growth of the pathogen. BOS1also protects the plant from stresses, such as drought and soil salinity. These stresses are called abiotic stresses. Pathogens and pests create biotic stresses.

Gray mold disease destroys about 10 percent of the grape crop annually and about 25 percent to 30 percent of tomato and strawberry crops in some seasons, experts report. It also infects many varieties of flowers including petunias, geraniums and chrysanthemums.

"The major control for most of these pathogens now is application of fungicides," Mengiste said." But there are environmental pollution and health concerns connected with their use. Also, Botrytis builds up genetic resistance to fungicides that are used frequently.

"The most cost-effective and environmentally sound approach to preventing this disease is through genetic resistance. If we can use the same gene we found in Arabidopsis in other plants that are hosts of Botrytis, then BOS1 can be utilized to prevent this fungus and other similar plant diseases."

Cool, humid weather fosters the fungus. That’s why the mold often appears on strawberries and raspberries stored in your refrigerator’s fruit and vegetable drawer.

Because spores spread Botrytis, one infected piece of fruit or plant will infect nearby plants. The fungus can start in healthy plant tissue but most often begins in dead leaves or petals that have fallen to the ground. Botrytis can live through the winter in a dormant state and then attack new growth in the spring.

Because of the pathogen’s ability to spread easily and kill a whole plant, researchers tested single mutant Arabidopsis leaves to learn the susceptibility. The scientists inoculated a single leaf with a mixture containing Botrytis spores and then removed the leaves from the plant so individual plants would survive for further testing. This allowed them to determine which gene halted the fungus’ invasion.

"We want to understand how plants resist Botrytis, what biological events occur when plants perceive that this fungus or other necrotrophic pathogens are present," Mengiste said.

Botrytis is a necrotrophic pathogen, meaning it obtains nutrients from dead cells. That is why the fungus kills the plant cell or invades through injured or dead parts of plants. Once it enters dead areas, it begins killing other parts of the plant, resulting in plant decay.

"If we can identify these genes, then they can be used to expedite plant breeding for resistance to Botrytis and other similar diseases," Mengiste said.

In learning how to prevent necrotrophic pathogens, the researchers face a problem because biotropic pathogens also attack plants. These are pathogens that feed on live cells. Some plants actually kill their own cells at the site where a biotrophic pathogen is trying to invade in an effort to combat the threat.

"The methods that work to protect against biotrophic pathogens may actually promote necrotrophic pathogens," Mengiste said.

But he said he believes understanding the molecular workings of plants’ natural methods of fighting off disease is the best way to overcome pathogens.

The BOS1gene appears to control other genes and seems to provide resistance to several types of stresses. In other words, it controls a number of different genes or proteins in a molecular pathway that determines whether a plant overcomes adversity.

"In terms of biotechnology and improvements of both agricultural and horticultural plants through molecular approaches, it’s important that this gene is a regulatory protein because it means you can just alter it so there is more or less of it. An alteration of the gene then can control multiple genes further down the pathway," he said.

"This way we could increase yield and quality of some plants depending on the conditions and/or diseases that may affect them."

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Tesfaye Mengiste, (765) 494-0599, mengiste@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://www.usda.gov/
http://news.uns.purdue.edu/html4ever/031023.Mengiste.graymold.html

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>