Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological trick reveals key step in melatonin’s regulation

27.10.2003


Johns Hopkins researchers have uncovered a key step in the body’s regulation of melatonin, a major sleep-related chemical in the brain. In the advance online section of Nature Structural Biology, the research team reports finding the switch that causes destruction of the enzyme that makes melatonin -- no enzyme, no melatonin.



Melatonin levels are high at night and low during the day. Even at night, melatonin disappears after exposure to bright light, a response that likely contributes to its normal daily cycle, but plagues shift workers and jet setters by leading to sleeplessness. To help understand melatonin’s light-induced disappearance, the Hopkins researchers turned to the enzyme that makes it, a protein called AANAT.

One way cells turn proteins like AANAT on and off is by modifying them, attaching or removing small bits, such as phosphate groups, to particular spots along the protein’s backbone. For AANAT, the key spot turns out to be building block number 31, the researchers have found.


"We have discovered that addition and removal of the phosphate group at this position is the key step in regulating the enzyme’s stability," says Philip Cole, M.D., Ph.D., professor and director of pharmacology and molecular sciences in Hopkins’ Institute for Basic Biomedical Sciences. "When this phosphate group is present, the enzyme is stable."

To test the importance of the phosphate group to the enzyme’s stability, research associate Weiping Zheng, Ph.D., developed a mimic of the key building block with the equivalent of a permanently affixed phosphate group.

Zheng inserted the mimic into the appropriate place in the enzyme, and research associate Zhongsen Zhang injected the altered enzyme into cells. The altered enzyme stayed intact in the cells much longer than the normal enzyme, whose phosphate group can easily be removed, the scientists report.

The researchers’ next step is to determine how exposure to light accelerates removal of the phosphate and destruction of the enzyme, leading to a rapid drop off in melatonin. "Now we can fish for unknown players in the degradation of the enzyme and hopefully find the trigger than leads to its light-activated destruction," says Zheng.

They’ve already shown that the phosphate group on building block number 31 also improves the enzyme’s ability to bind to a protein known as 14-3-3, further increasing the enzyme’s stability and delaying its degradation.

Cole adds that the mimic Zheng developed will do far more than just ease study of melatonin’s daily cycles. Literally thousands of important proteins are controlled by the addition or removal of phosphate groups, he says, offering thousands of opportunities to use the mimic to help understand cellular processes and their controls.


Funding for the study was provided by the National Institutes of Health and the Ellison Medical Foundation. Aspects of the work were carried out at the AB Mass Spectrometry/Proteomics Facility at the Johns Hopkins School of Medicine, which is funded by the U.S. National Center for Research Resources, the Johns Hopkins Fund for Medical Discovery and the Johns Hopkins Institute for Cell Engineering.

Authors on the study are Zheng, Zhang and Cole of The Johns Hopkins University School of Medicine, and Surajit Ganguly, David Klein and Joan Weller of the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nsb/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>