Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological trick reveals key step in melatonin’s regulation

27.10.2003


Johns Hopkins researchers have uncovered a key step in the body’s regulation of melatonin, a major sleep-related chemical in the brain. In the advance online section of Nature Structural Biology, the research team reports finding the switch that causes destruction of the enzyme that makes melatonin -- no enzyme, no melatonin.



Melatonin levels are high at night and low during the day. Even at night, melatonin disappears after exposure to bright light, a response that likely contributes to its normal daily cycle, but plagues shift workers and jet setters by leading to sleeplessness. To help understand melatonin’s light-induced disappearance, the Hopkins researchers turned to the enzyme that makes it, a protein called AANAT.

One way cells turn proteins like AANAT on and off is by modifying them, attaching or removing small bits, such as phosphate groups, to particular spots along the protein’s backbone. For AANAT, the key spot turns out to be building block number 31, the researchers have found.


"We have discovered that addition and removal of the phosphate group at this position is the key step in regulating the enzyme’s stability," says Philip Cole, M.D., Ph.D., professor and director of pharmacology and molecular sciences in Hopkins’ Institute for Basic Biomedical Sciences. "When this phosphate group is present, the enzyme is stable."

To test the importance of the phosphate group to the enzyme’s stability, research associate Weiping Zheng, Ph.D., developed a mimic of the key building block with the equivalent of a permanently affixed phosphate group.

Zheng inserted the mimic into the appropriate place in the enzyme, and research associate Zhongsen Zhang injected the altered enzyme into cells. The altered enzyme stayed intact in the cells much longer than the normal enzyme, whose phosphate group can easily be removed, the scientists report.

The researchers’ next step is to determine how exposure to light accelerates removal of the phosphate and destruction of the enzyme, leading to a rapid drop off in melatonin. "Now we can fish for unknown players in the degradation of the enzyme and hopefully find the trigger than leads to its light-activated destruction," says Zheng.

They’ve already shown that the phosphate group on building block number 31 also improves the enzyme’s ability to bind to a protein known as 14-3-3, further increasing the enzyme’s stability and delaying its degradation.

Cole adds that the mimic Zheng developed will do far more than just ease study of melatonin’s daily cycles. Literally thousands of important proteins are controlled by the addition or removal of phosphate groups, he says, offering thousands of opportunities to use the mimic to help understand cellular processes and their controls.


Funding for the study was provided by the National Institutes of Health and the Ellison Medical Foundation. Aspects of the work were carried out at the AB Mass Spectrometry/Proteomics Facility at the Johns Hopkins School of Medicine, which is funded by the U.S. National Center for Research Resources, the Johns Hopkins Fund for Medical Discovery and the Johns Hopkins Institute for Cell Engineering.

Authors on the study are Zheng, Zhang and Cole of The Johns Hopkins University School of Medicine, and Surajit Ganguly, David Klein and Joan Weller of the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nsb/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>