Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological trick reveals key step in melatonin’s regulation

27.10.2003


Johns Hopkins researchers have uncovered a key step in the body’s regulation of melatonin, a major sleep-related chemical in the brain. In the advance online section of Nature Structural Biology, the research team reports finding the switch that causes destruction of the enzyme that makes melatonin -- no enzyme, no melatonin.



Melatonin levels are high at night and low during the day. Even at night, melatonin disappears after exposure to bright light, a response that likely contributes to its normal daily cycle, but plagues shift workers and jet setters by leading to sleeplessness. To help understand melatonin’s light-induced disappearance, the Hopkins researchers turned to the enzyme that makes it, a protein called AANAT.

One way cells turn proteins like AANAT on and off is by modifying them, attaching or removing small bits, such as phosphate groups, to particular spots along the protein’s backbone. For AANAT, the key spot turns out to be building block number 31, the researchers have found.


"We have discovered that addition and removal of the phosphate group at this position is the key step in regulating the enzyme’s stability," says Philip Cole, M.D., Ph.D., professor and director of pharmacology and molecular sciences in Hopkins’ Institute for Basic Biomedical Sciences. "When this phosphate group is present, the enzyme is stable."

To test the importance of the phosphate group to the enzyme’s stability, research associate Weiping Zheng, Ph.D., developed a mimic of the key building block with the equivalent of a permanently affixed phosphate group.

Zheng inserted the mimic into the appropriate place in the enzyme, and research associate Zhongsen Zhang injected the altered enzyme into cells. The altered enzyme stayed intact in the cells much longer than the normal enzyme, whose phosphate group can easily be removed, the scientists report.

The researchers’ next step is to determine how exposure to light accelerates removal of the phosphate and destruction of the enzyme, leading to a rapid drop off in melatonin. "Now we can fish for unknown players in the degradation of the enzyme and hopefully find the trigger than leads to its light-activated destruction," says Zheng.

They’ve already shown that the phosphate group on building block number 31 also improves the enzyme’s ability to bind to a protein known as 14-3-3, further increasing the enzyme’s stability and delaying its degradation.

Cole adds that the mimic Zheng developed will do far more than just ease study of melatonin’s daily cycles. Literally thousands of important proteins are controlled by the addition or removal of phosphate groups, he says, offering thousands of opportunities to use the mimic to help understand cellular processes and their controls.


Funding for the study was provided by the National Institutes of Health and the Ellison Medical Foundation. Aspects of the work were carried out at the AB Mass Spectrometry/Proteomics Facility at the Johns Hopkins School of Medicine, which is funded by the U.S. National Center for Research Resources, the Johns Hopkins Fund for Medical Discovery and the Johns Hopkins Institute for Cell Engineering.

Authors on the study are Zheng, Zhang and Cole of The Johns Hopkins University School of Medicine, and Surajit Ganguly, David Klein and Joan Weller of the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nsb/

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>