Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover how key cancer protein works

24.10.2003


Understanding cancer

Mayo Clinic researchers are the first to describe what goes wrong during the growth cycle of certain cells that can lead to inherited forms of breast cancer. Knowing the nature of this biochemical modification is a first step to designing drugs that can correct it to stop cancer.

The Mayo Clinic research finding appears in today’s issue of the journal Science. It is important because it solves an aspect of a mystery that cancer researchers worldwide have been intensely investigating. Their question is: How do the regulating mechanisms of the "cell-cycle" work?



The cell cycle is the complex, natural -- and normally orderly -- process by which cells reproduce. The Mayo Clinic research reveals the details of a molecular mechanism involved in cell cycle regulation of a gene known as the "BRCA1 tumor suppressor gene." They focused on this gene because an estimated 50 percent of inherited breast cancers are linked to growth errors -- also called mutations -- in this gene. They hypothesized that a specific kind of biochemical modification was involved in disrupting the cell cycle to cause BRCA1 mutations. And they were right.

"With this breast cancer gene, the understanding is that if this gene is mutated it may trigger additional mutations throughout your lifetime and that contributes to a lifetime risk of developing breast cancer. We wanted to understand the molecular mechanism behind this," says Junjie Chen, Ph.D., of the Mayo Clinic Department of Oncology, and lead author of the Science report. "Now that we understand one aspect of it, this allows us to go to the next level, such as how to use our understanding to target cells so we can gain control of the cell cycle to stop cancers."

In the language of science, their principal finding is this: That a specific biochemical modification known as "phosphorylation" (fos-for-a-LAY-shun) is required at certain cell-cycle stages to activate proteins associated with the BRCA1 gene. These proteins are essential to the effective tumor-suppression function that BRCA1 genes perform.

Biology Backgrounder

Genes are strings of DNA molecules. They are found on chromosomes within cell nuclei. DNA is like a storage bin for vital information -- like the hard drive of a computer. To be useful, a computer hard drives needs to run a program that performs work. It’s the same with DNA. To be useful, it runs programs (RNAs) that make desired products. The products are proteins. Proteins are the substances that carry out all life functions, which is why advanced cancer research focuses on them.

To do their jobs, proteins need to be activated. They become activated by binding to other protein partners. The Mayo Clinic team investigated a specific kind of protein the BRCA1 gene codes for, known as a BRCT-domain protein. The BRCT-domain influences how the protein binds and with what protein partners it binds -- which in turn, affects the role the protein plays in the cycle of cell growth. BRCT domains are found in many proteins involved in cell-cycle regulation, and have for some years been thought to be key players in cell-cycle regulation. But just how they did so was not known.

The Mayo Clinic Research Solves The Mystery

The Mayo team showed that phosphorylation of a binding partner is necessary to activate the BRCT-domain protein. Once activated, the BRCT-domain protein then helps regulate vital tasks in the cell cycle. These tasks include repairing DNA or signaling DNA damage. When these tasks are accomplished, the BRCA1 gene can function correctly to suppress tumors. Without phosphorylation of BRCA1 binding partners, BRCA1 cannot function to suppress tumors. This leaves cells vulnerable to the cumulative mutations that can eventually produce breast cancer.

Implications for Patient Care

This finding is an important early step in research to devise new anti-cancer treatments. Understanding the interactions between BRCT domains and their targets will help researchers make the next move: to devise drug interventions that exploit phosphorylation bonds between key proteins. In this way, they could therapeutically regulate the cell cycle.

Robert Nellis | EurekAlert!
Further information:
http://www.sciencemag.org/content/current

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>