Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover how key cancer protein works

24.10.2003


Understanding cancer

Mayo Clinic researchers are the first to describe what goes wrong during the growth cycle of certain cells that can lead to inherited forms of breast cancer. Knowing the nature of this biochemical modification is a first step to designing drugs that can correct it to stop cancer.

The Mayo Clinic research finding appears in today’s issue of the journal Science. It is important because it solves an aspect of a mystery that cancer researchers worldwide have been intensely investigating. Their question is: How do the regulating mechanisms of the "cell-cycle" work?



The cell cycle is the complex, natural -- and normally orderly -- process by which cells reproduce. The Mayo Clinic research reveals the details of a molecular mechanism involved in cell cycle regulation of a gene known as the "BRCA1 tumor suppressor gene." They focused on this gene because an estimated 50 percent of inherited breast cancers are linked to growth errors -- also called mutations -- in this gene. They hypothesized that a specific kind of biochemical modification was involved in disrupting the cell cycle to cause BRCA1 mutations. And they were right.

"With this breast cancer gene, the understanding is that if this gene is mutated it may trigger additional mutations throughout your lifetime and that contributes to a lifetime risk of developing breast cancer. We wanted to understand the molecular mechanism behind this," says Junjie Chen, Ph.D., of the Mayo Clinic Department of Oncology, and lead author of the Science report. "Now that we understand one aspect of it, this allows us to go to the next level, such as how to use our understanding to target cells so we can gain control of the cell cycle to stop cancers."

In the language of science, their principal finding is this: That a specific biochemical modification known as "phosphorylation" (fos-for-a-LAY-shun) is required at certain cell-cycle stages to activate proteins associated with the BRCA1 gene. These proteins are essential to the effective tumor-suppression function that BRCA1 genes perform.

Biology Backgrounder

Genes are strings of DNA molecules. They are found on chromosomes within cell nuclei. DNA is like a storage bin for vital information -- like the hard drive of a computer. To be useful, a computer hard drives needs to run a program that performs work. It’s the same with DNA. To be useful, it runs programs (RNAs) that make desired products. The products are proteins. Proteins are the substances that carry out all life functions, which is why advanced cancer research focuses on them.

To do their jobs, proteins need to be activated. They become activated by binding to other protein partners. The Mayo Clinic team investigated a specific kind of protein the BRCA1 gene codes for, known as a BRCT-domain protein. The BRCT-domain influences how the protein binds and with what protein partners it binds -- which in turn, affects the role the protein plays in the cycle of cell growth. BRCT domains are found in many proteins involved in cell-cycle regulation, and have for some years been thought to be key players in cell-cycle regulation. But just how they did so was not known.

The Mayo Clinic Research Solves The Mystery

The Mayo team showed that phosphorylation of a binding partner is necessary to activate the BRCT-domain protein. Once activated, the BRCT-domain protein then helps regulate vital tasks in the cell cycle. These tasks include repairing DNA or signaling DNA damage. When these tasks are accomplished, the BRCA1 gene can function correctly to suppress tumors. Without phosphorylation of BRCA1 binding partners, BRCA1 cannot function to suppress tumors. This leaves cells vulnerable to the cumulative mutations that can eventually produce breast cancer.

Implications for Patient Care

This finding is an important early step in research to devise new anti-cancer treatments. Understanding the interactions between BRCT domains and their targets will help researchers make the next move: to devise drug interventions that exploit phosphorylation bonds between key proteins. In this way, they could therapeutically regulate the cell cycle.

Robert Nellis | EurekAlert!
Further information:
http://www.sciencemag.org/content/current

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>