Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover how key cancer protein works

24.10.2003


Understanding cancer

Mayo Clinic researchers are the first to describe what goes wrong during the growth cycle of certain cells that can lead to inherited forms of breast cancer. Knowing the nature of this biochemical modification is a first step to designing drugs that can correct it to stop cancer.

The Mayo Clinic research finding appears in today’s issue of the journal Science. It is important because it solves an aspect of a mystery that cancer researchers worldwide have been intensely investigating. Their question is: How do the regulating mechanisms of the "cell-cycle" work?



The cell cycle is the complex, natural -- and normally orderly -- process by which cells reproduce. The Mayo Clinic research reveals the details of a molecular mechanism involved in cell cycle regulation of a gene known as the "BRCA1 tumor suppressor gene." They focused on this gene because an estimated 50 percent of inherited breast cancers are linked to growth errors -- also called mutations -- in this gene. They hypothesized that a specific kind of biochemical modification was involved in disrupting the cell cycle to cause BRCA1 mutations. And they were right.

"With this breast cancer gene, the understanding is that if this gene is mutated it may trigger additional mutations throughout your lifetime and that contributes to a lifetime risk of developing breast cancer. We wanted to understand the molecular mechanism behind this," says Junjie Chen, Ph.D., of the Mayo Clinic Department of Oncology, and lead author of the Science report. "Now that we understand one aspect of it, this allows us to go to the next level, such as how to use our understanding to target cells so we can gain control of the cell cycle to stop cancers."

In the language of science, their principal finding is this: That a specific biochemical modification known as "phosphorylation" (fos-for-a-LAY-shun) is required at certain cell-cycle stages to activate proteins associated with the BRCA1 gene. These proteins are essential to the effective tumor-suppression function that BRCA1 genes perform.

Biology Backgrounder

Genes are strings of DNA molecules. They are found on chromosomes within cell nuclei. DNA is like a storage bin for vital information -- like the hard drive of a computer. To be useful, a computer hard drives needs to run a program that performs work. It’s the same with DNA. To be useful, it runs programs (RNAs) that make desired products. The products are proteins. Proteins are the substances that carry out all life functions, which is why advanced cancer research focuses on them.

To do their jobs, proteins need to be activated. They become activated by binding to other protein partners. The Mayo Clinic team investigated a specific kind of protein the BRCA1 gene codes for, known as a BRCT-domain protein. The BRCT-domain influences how the protein binds and with what protein partners it binds -- which in turn, affects the role the protein plays in the cycle of cell growth. BRCT domains are found in many proteins involved in cell-cycle regulation, and have for some years been thought to be key players in cell-cycle regulation. But just how they did so was not known.

The Mayo Clinic Research Solves The Mystery

The Mayo team showed that phosphorylation of a binding partner is necessary to activate the BRCT-domain protein. Once activated, the BRCT-domain protein then helps regulate vital tasks in the cell cycle. These tasks include repairing DNA or signaling DNA damage. When these tasks are accomplished, the BRCA1 gene can function correctly to suppress tumors. Without phosphorylation of BRCA1 binding partners, BRCA1 cannot function to suppress tumors. This leaves cells vulnerable to the cumulative mutations that can eventually produce breast cancer.

Implications for Patient Care

This finding is an important early step in research to devise new anti-cancer treatments. Understanding the interactions between BRCT domains and their targets will help researchers make the next move: to devise drug interventions that exploit phosphorylation bonds between key proteins. In this way, they could therapeutically regulate the cell cycle.

Robert Nellis | EurekAlert!
Further information:
http://www.sciencemag.org/content/current

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>