Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of antibiotics stops pathogens in their genetic tracks

24.10.2003


Researchers have found that a promising new class of antibacterial chemicals inhibits one of the most fundamental processes of life – a cell’s ability to express genetic material. Knowing exactly how these chemicals keep bacterial cells in check can help scientists make more effective antibiotics.

Like many bacterial inhibitors, this new class of compounds – called the CBR703 series – inhibits RNA polymerase, the key enzyme in gene expression. However, the unique mechanism that these compounds use to inhibit RNA polymerase was previously unknown and is first described in this week’s journal Science.

"It’s a long way between knowing that something will kill bacteria and figuring out the exact process by which the bacteria is killed," said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University. "Other antibiotics also inhibit RNA polymerase, but the ones in this study use a radically different inhibitory mechanism."



According to the study, CBR703 inhibitors hindered the ability of RNA polymerase in Escherichia coli to perform crucial catalytic functions, such as building molecules of RNA. Compounds in the CBR703 series – all are synthetic chemicals – render RNA polymerase useless by binding to a specific place on the enzyme – a necessary step in the process.

"Unless you know where the inhibitor binds, you can’t draw any conclusions about how that inhibitor affects its target," Artsimovitch said. "On the other hand, once you have this information, you could predict if the inhibitor would be effective against a broad range of bacteria, as the binding site may not be the same in RNA polymerase enzymes from different bacteria."

She and her colleagues chose to study the effects of CBR703 inhibitors on E. coli, since the RNA polymerase enzyme in many pathogens is similar to that found in the E. coli bacteria. CBR703 compounds are not yet used as commercial antibiotics.

While the CBR703 inhibitors seemed to stop gene expression in E. coli, the researchers found that the compounds wouldn’t inhibit RNA polymerase in human cells. Finding this lack of inhibition from human cells is key to designing new drugs, as some antibiotic compounds could harm both bacteria and human cells.

"When we find something that inhibits a particular process, it’s easier to make targeted drugs," Artsimovitch said. "In this case, finding something that inhibited bacterial RNA polymerase lets us look at the structure of the enzyme and determine how to improve the inhibitors further to make them more effective."

Artsimovitch conducted the study with Robert Landick, a professor of microbiology at the University of Wisconsin-Madison and Clement Chu and A. Simon Lynch, both with Cumbre, Inc., a drug discovery firm in Dallas.

The researchers at Cumbre, Inc., prepared and analyzed a large set of chemical compounds in order to find one that would inhibit transcription in E. coli. Transcription is the first step of gene expression, when a copy of RNA is made from a DNA sequence.

After finding that CBR703 inhibited transcription in E. coli, the researchers ran the bacteria through a series of tests that allowed them to see where and when during transcription the inhibitor acted on the enzyme.

Transcription is a multi-step process in which the genetic information from DNA is transcribed, or written on, RNA. Transcription is key for all cellular processes. In this study, CBR703 inhibited the addition of nucleotides – individual units that make up an RNA molecule – thus keeping a new strand of RNA from forming.

"Knowing how a new antibiotic acts on its target takes the process of making new drugs to a new level, allowing for better understanding of a drug’s direct- and side-effects," she said. This new series of antibacterial compounds holds great promise for designing drugs specifically targeted to major classes of bacterial pathogens, such as those that cause pneumonia and tuberculosis.

"Whenever a new class of antibacterial compounds becomes available, it leads to a surge in enthusiasm in the medical community, since novel antibiotics can provide new treatments, or at least may provide new weapons against pathogenic bacteria that have developed resistance to other drugs," Artsimovitch said.

This research was supported by grants from the National Institutes of Health and the U.S. Department of Agriculture and in part by Cumbre, Inc. Artsimovitch has no link to Cumbre beyond the scope of this study.

Contact: Irina Artsimovitch; +1 (614) 292-6777; Artsimovitch.1@osu.edu

Irina Artsimovitch | Ohio State University
Further information:
http://www.osu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>