Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New class of antibiotics stops pathogens in their genetic tracks


Researchers have found that a promising new class of antibacterial chemicals inhibits one of the most fundamental processes of life – a cell’s ability to express genetic material. Knowing exactly how these chemicals keep bacterial cells in check can help scientists make more effective antibiotics.

Like many bacterial inhibitors, this new class of compounds – called the CBR703 series – inhibits RNA polymerase, the key enzyme in gene expression. However, the unique mechanism that these compounds use to inhibit RNA polymerase was previously unknown and is first described in this week’s journal Science.

"It’s a long way between knowing that something will kill bacteria and figuring out the exact process by which the bacteria is killed," said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University. "Other antibiotics also inhibit RNA polymerase, but the ones in this study use a radically different inhibitory mechanism."

According to the study, CBR703 inhibitors hindered the ability of RNA polymerase in Escherichia coli to perform crucial catalytic functions, such as building molecules of RNA. Compounds in the CBR703 series – all are synthetic chemicals – render RNA polymerase useless by binding to a specific place on the enzyme – a necessary step in the process.

"Unless you know where the inhibitor binds, you can’t draw any conclusions about how that inhibitor affects its target," Artsimovitch said. "On the other hand, once you have this information, you could predict if the inhibitor would be effective against a broad range of bacteria, as the binding site may not be the same in RNA polymerase enzymes from different bacteria."

She and her colleagues chose to study the effects of CBR703 inhibitors on E. coli, since the RNA polymerase enzyme in many pathogens is similar to that found in the E. coli bacteria. CBR703 compounds are not yet used as commercial antibiotics.

While the CBR703 inhibitors seemed to stop gene expression in E. coli, the researchers found that the compounds wouldn’t inhibit RNA polymerase in human cells. Finding this lack of inhibition from human cells is key to designing new drugs, as some antibiotic compounds could harm both bacteria and human cells.

"When we find something that inhibits a particular process, it’s easier to make targeted drugs," Artsimovitch said. "In this case, finding something that inhibited bacterial RNA polymerase lets us look at the structure of the enzyme and determine how to improve the inhibitors further to make them more effective."

Artsimovitch conducted the study with Robert Landick, a professor of microbiology at the University of Wisconsin-Madison and Clement Chu and A. Simon Lynch, both with Cumbre, Inc., a drug discovery firm in Dallas.

The researchers at Cumbre, Inc., prepared and analyzed a large set of chemical compounds in order to find one that would inhibit transcription in E. coli. Transcription is the first step of gene expression, when a copy of RNA is made from a DNA sequence.

After finding that CBR703 inhibited transcription in E. coli, the researchers ran the bacteria through a series of tests that allowed them to see where and when during transcription the inhibitor acted on the enzyme.

Transcription is a multi-step process in which the genetic information from DNA is transcribed, or written on, RNA. Transcription is key for all cellular processes. In this study, CBR703 inhibited the addition of nucleotides – individual units that make up an RNA molecule – thus keeping a new strand of RNA from forming.

"Knowing how a new antibiotic acts on its target takes the process of making new drugs to a new level, allowing for better understanding of a drug’s direct- and side-effects," she said. This new series of antibacterial compounds holds great promise for designing drugs specifically targeted to major classes of bacterial pathogens, such as those that cause pneumonia and tuberculosis.

"Whenever a new class of antibacterial compounds becomes available, it leads to a surge in enthusiasm in the medical community, since novel antibiotics can provide new treatments, or at least may provide new weapons against pathogenic bacteria that have developed resistance to other drugs," Artsimovitch said.

This research was supported by grants from the National Institutes of Health and the U.S. Department of Agriculture and in part by Cumbre, Inc. Artsimovitch has no link to Cumbre beyond the scope of this study.

Contact: Irina Artsimovitch; +1 (614) 292-6777;

Irina Artsimovitch | Ohio State University
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>