Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Poor prognosis linked to BRCA1 mutations


Breast cancer patients have a lower chance of long-term survival if they carry an inherited mutation in the BRCA1 gene, according to research published in Breast Cancer Research this week. However, the poor prognosis associated with the mutated gene is mitigated by chemotherapy.

The breast cancer susceptibility genes, BRCA1 and BRCA2, were identified over eight years ago, but the best way of treating women who develop hereditary breast cancer associated with mutations in these genes is still not clear.

A team of researchers from McGill University in Montreal and the Memorial Sloan-Kettering Cancer Center in New York investigated how the prognosis of breast cancer was affected by mutations in BRCA1 and BRCA2, and by the administration of chemotherapy. They studied the clinical records of 496 women of Ashkenazi Jewish descent who underwent treatment for invasive breast cancer between 1980 and 1995. Their results suggest that physicians should take the presence of such mutations into account when they are making treatment decisions.

56 of the women studied carried at least one mutation in either the BRCA1 or the BRCA2 gene. 79 of the women died from their breast cancer within ten years of diagnosis.

The ten-year survival rates for women with BRCA1 mutations were worse than those without mutations (38% of carriers died compared with 14% of non-carriers). However, the presence of a BRCA1 mutation did not reduce long-term survival if the women were treated with chemotherapy. Risk factors other than the mutations are likely to cause a poor prognosis under these circumstances.

The ten-year survival rates for women with BRCA2 mutations did not differ to those of non-carriers. Also, administration of chemotherapy did not affect survival rates of women with BRCA2 mutations, but the authors acknowledge that the sample size is too small for definitive conclusions

Further studies are necessary to see if the type of chemotherapy used has an effect when these mutations are present.

The researchers say: "This study demonstrates that women with specific BRCA1/2 mutations who develop breast cancer are at increased risk from death from their disease, particularly if the mutation is in BRCA1."

Although other factors contributed to a poor prognosis, for example if breast cancer was first diagnosed when the women were under 50 years old or if the tumour was larger than 2cm upon diagnosis, mutations in BRCA1 predicted an increase in mortality even when these factors were taken into account (if chemotherapy was not given). It may be that chemotherapy is particularly effective for women who carry a BRCA1 mutation.

The risk for breast cancer in the unaffected breast was much higher for BRCA1/2 mutation carriers than non-carriers. However, the 10-year risk of cancer returning in the treated breast was no greater in women with the BRCA mutations than in women without. This may have implications for women who have to choose between bilateral mastectomy and breast conservation, however, a longer follow-up study is needed before women can be reliably advised.

For further information about this research, please contact Associate Professor William Foulkes by email at or by phone on 514-934-1934 x44121

Gemma Bradley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>