Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genomic data helps resolve biology’s tree of life

23.10.2003


For more than a century, biologists have been working to assign plants, animals and microbes their respective places on the tree of life. More recently, by comparing DNA sequences from a few genes per species, scientists have been trying to construct a grand tree of life that accurately portrays the course of life on Earth, and shows how all organisms are related, one to another.



However, despite the detailed insights provided by individual genes, that approach has proved cumbersome in its ability to resolve the order of events in the distant past.

Now, a team of scientists from the Howard Hughes Medical Institute at the University of Wisconsin-Madison, writing in the current issue (Oct. 23) of the prestigious journal Nature, has shown that new genomic-scale data offers powerful, unprecedented resolution of the evolutionary tree.


The finding is important because an accurate depiction of a tree of life promises biologists a summary of the history of life on Earth over billions of years. Such a rigorous historical framework is an essential backdrop not just for evolutionary biology, but also for efforts as diverse as the search for new drugs and agricultural agents, studies of emerging diseases, and evaluating issues of species conservation and ecosystem restoration.

"The overall goal is that we want to know who is related to whom," says Sean B. Carroll, a UW-Madison professor of genetics and the senior author of the Nature paper. "The challenge has been to decipher the true tree from those that have changed as data have been added and re-analyzed over time."

In efforts to arrive at a reliable tree of life, scientists since the 1980s have used genes to infer the evolutionary history for various organisms. By comparing one or a few genes common to related animals or plants, and looking at differences in the selected genes, scientists began to map out family trees for different plants, animals and microbes.

The problem with that approach, according to the new Wisconsin study, is that trees constructed on single genes often seem to lack reliability. Different genes give different answers so that one gene from a group of organisms depicts one tree, while a different gene from the same organisms will paint an entirely different phylogenetic picture. More genes, it has been thought, could help resolve the issue, and the new Wisconsin study now provides the first glimpse at both just how unreliable single genes can be and how many genes might be needed to overcome the problem.

Using new genomic sequences from eight yeast species, the group in Carroll’s lab, which was led by post-doctoral fellows Antonis Rokas, Barry L. Williams and Nicole King, were able to assess the reliability of trees constructed using more than 100 genes. The result was a single tree with no doubt.

"We were shocked. We didn’t expect such an unprecedented level of resolution," says Rokas. "Some genes give you one story, some genes give you another, but with enough of them together we get a single picture."

Apparently, the catch with the single gene model is that some of the thousands of nucleotides that make up a gene can be biased as natural selection acts on the gene to fulfill a certain role. "Each gene carries information concerning both history and selection. Genes alone are biased, but together their shared history overrides each genes’ unique bias and provides a surprisingly strong picture of evolution," says Williams.

The implications of the study are exciting, and provide encouraging news for the future of understanding the tree of life, says Carroll. As the data sets get larger the influence of variation caused by natural selection becomes small enough that true historical relationships can be worked out.

"The problem is that molecules don’t all change in the same way," says Carroll. "Now, with whole genomes being deciphered at a rapid clip, long-standing questions about the relationships between various animals and plants appear to be within our reach."

The take home message, according to Williams and Rokas, is that the advent of the genomic age means the data necessary to build robust phylogenetic trees are coming on line. Already, scientists have genomic sequences for a number of different organisms, ranging from bacteria to humans.

"It’s time for people to scale up, " says Rokas. "By increasing the amount of data, we will see a more robust picture of the tree of life."


-- Terry Devitt 608-262-8282, trdevitt@wisc.edu

ADDITIONAL CONTACT: Antonis Rokas 608-265-2004, arokas@wisc.edu; Barry L. Williams 608-265-2004, bwilliams2@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>