Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study identifies gene signaling puberty

23.10.2003


NIH-funded researchers have identified a gene that appears to be a crucial signal for the beginning of puberty in human beings as well as in mice. Without a functioning copy of the gene, both humans and mice appear to be unable to enter puberty normally. The newly identified gene, known as GPR54, also appears necessary for normal reproductive functioning in human beings.



The study, funded in part by the National Institute of Child Health and Human Development (NICHD), appears in the October 23 issue of the New England Journal of Medicine. GPR54 is located on an autosomal chromosome (a chromosome that is not a sex chromosome). The study also was funded by the National Center for Research Resources and the National Institute of General Medical Sciences, both at NIH.

"The discovery of GPR54 is an important step in understanding the elaborate sequence of events needed for normal sexual maturation," said Duane Alexander, M.D., Director of the National Institute of Child Health and Human Development (NICHD). "Findings from this study may lead not only to more effective treatments for individuals who fail to enter puberty normally, but may provide insight into the causes of other reproductive disorders as well."


Puberty begins when a substance known as gonadotropin releasing hormone (GnRH) is secreted from a part of the brain called the hypothalamus. Individuals who fail to reach puberty because of inherited or spontaneous genetic mutations are infertile.

"The discovery of GPR54 as a gatekeeper for puberty across species is very exciting" said the study’s first author, Stephanie B. Seminara, of the Reproductive Endocrine Unit, Massachusetts General Hospital, Boston and a member of the NICHD-funded, Harvard-wide Endocrine Sciences Center. "In the future, this work might lead to new therapies for the treatment of a variety of reproductive disorders."

The GPR54 gene contains the information needed to make a receptor. Receptors and the molecules that bind to them are analogous to a lock and a key mechanism. Like a key fits into a lock, certain molecules bind to their receptors, which usually sit atop a cell’s surface. Once the binding takes place, the cell either will begin a new biochemical activity, or halt an ongoing activity. The researchers think that the molecule metastatin binds to the GPR54 receptor. As of yet, they do not know what precise effect the molecule may have on cells.

The researchers sought to learn which genes are involved in triggering the brain’s release of GnRH at puberty. Two teams of researchers working independently of each other were involved in the discovery. One consisted of U.S. based researchers, the other, of British researchers.

The U.S. team included Scientists from Massachusetts General Hospital, Brigham and Women’s Hospital, and Harvard Medical School who collaborated with a researcher at Kuwait University. The British team included researchers from the University of Cambridge and Paradigm Therapeutics Ltd. in Cambridge. The U.S. researchers isolated the gene from members of a Saudi Arabian family that suffered from idiopathic hypogonadotropic hypogonadism (IHH), a rare inherited disease in which sexual development is incomplete or does not occur because of insufficient release of GnRH from the hypothalamus. If untreated, individuals with this disorder fail to develop sexually.

By analyzing genetic material from men and women with IHH using tools from the NIH-sponsored Human Genome Project, the U.S. researchers first discovered that a certain region of chromosome 19 carried the mutant gene responsible for IHH. The researchers then identified GPR54 as the possible gene.

Working independently of the U.S. and Kuwaiti researchers, the British researchers created mice lacking GPR54. The mice without GPR54 also failed to reach puberty. The study authors found, however, that the brains of the mice contained normal levels of GnRH. The researchers do not yet know why the animals were unable to enter puberty, despite producing normal amounts of the hormone.

The findings from the two research teams complement each other, explained NICHD project officer Louis De Paolo, Ph.D, of NICHD’s Reproductive Sciences Branch.

"Through some careful detective work, the U.S. researchers pinpointed the gene that causes IHH in this family," said Louis De Paolo, Ph.D., project officer in NICHD’s Reproductive Sciences Branch. "Using the mouse model, the British researchers gained an important insight into the function of the gene."


The NICHD is part of the National Institutes of Health (NIH), the biomedical research arm of the federal government. NIH is an agency of the U.S. Department of Health and Human Services. The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. NICHD publications, as well as information about the Institute, are available from the NICHD Web site, http://www.nichd.nih.gov, or from the NICHD Information Resource Center, 1-800-370-2943; e-mail NICHDClearinghouse@mail.nih.gov.

Bob Bock | EurekAlert!
Further information:
http://www.nichd.nih.gov

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>