Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Morphing membranes: Cornell-led team makes first observation of essential cellular life process


Cell membranes -- the sacs encompassing the body’s living matter -- can assume a variety of shapes as they morph to engulf materials, expel others and assemble themselves into tissues.

A giant unilamellar vesicle (GUV) designed to mimic so-called rafts of lipid segregation in cell plasma membranes, when examined under multiphoton fluorescence microscopy, reveals boundaries (in blue) between optically resolvable domains (red). The GUV, made of sphingomyelin, cholesterol and another phospholipid, is approximately 30 micrometers in diameter. Copyright © Nature. Photomicrograph by DRBIO/Cornell.

In the past it was possible for theoreticians only to analyze the thermodynamic forces behind membrane shape-shifting. But now a team of biophysicists from Cornell University, the National Institutes of Health and the W.M. Keck Foundation has been able to watch the sacs, or vesicles, reshaping themselves under the light of multiphoton three-dimensional microscopy. The forces behind the membrane morphing, the researchers say, is akin to a party entertainer shaping balloon animals by tensioning the surfaces.

Their report on observing the membranes -- a laboratory-grown mixture of phospholipids and cholesterol -- being reshaped into two separate, two-dimensional liquid phases, or "rafts,"

appears in the latest issue of the journal Nature (Oct. 23, 2003; vol. 425, pp. 821-824) and is illustrated on the magazine’s cover. The findings, say the researchers, should help cell biologists understand the functions of cell membranes that are important to human health.

"This is the first experiment to show interphase energetics influencing membrane geometries," says Cornell professor of applied physics Watt W. Webb, leader of the team. Tobias Baumgart, Cornell postdoctoral researcher, developed and analyzed the new experiments, and Samuel T. Hess of the National Institute of Child Health and Human Development, computed the theoretical shape "fits."

The interactions observed between separate phases of shape-shifting fluid membranes generally confirmed predictions made by German theoretician Reinhard Lipowsky and his colleagues. The observations also enabled measurement of the energetic tensions of the interphase lines separating the membrane rafts. In the immune system, defending macrophages engulf microbes and enclose the invaders in vesicles. "The same physical processes that we see in model membranes systems may be involved in controlling the budding and fission of these vesicles in cells," Baumgart says.

Molecular rafts of different compositions are believed to be involved in cell-membrane processes, Webb says, "but the physics of raft formation is not well understood. We hope our experiments -- based on 3-D-resolved multiphoton microscopy to illuminate membrane domains and transition behavior -- will encourage others to join in this study."

Baumgart emphasizes that balloon animals are not a perfect analogy for shape-shifting vesicles. "For one thing, rubber balloons stretch and vesicle membranes don’t, but seeing these shapes from a distance, we can imagine some of the same forces at work," he says.

Zooming in with the multiphoton microscope, Baumgart and his colleagues looked at a simplified model of cell membranes. In nature, vesicles are a complex mixture of several kinds of lipids, proteins and impurities; Baumgart’s laboratory-grown vesicles were made of just three kinds of lipids -- sphingomyelin, dioleylphosphatidylcholine and cholesterol. Fluorescent dyes that light up under the microscope’s laser beam were used to label different membrane phases either red or blue. The researchers found that, depending on the temperature, a cell membrane can have several fluid phases with different physical properties at the same time -- something like oil and water on the same surface.

Baumgart says the simplified vesicles produced a wide assortment of exotic shapes and structures as the temperature was changed, processes that appear to involve the disappearance of boundary-line tension as the two phases merge into a single one at higher temperatures.

The study was supported, in part, by a National Institutes of Health grant to the Developmental Resource for Biophysical Imaging Opto-Electronics (DRBIO) at Cornell and by a Keck Foundation grant to Baumgart. Multiphoton microscopy is a patented process developed at Cornell by Webb, who also is the Eckert Professor in Engineering and director of DRBIO, and by Winfried Denk, who now is a director at Germany’s Max-Planck-Institut für Medizinische Forschung Biomedizinische Optik.

The title of the Nature article is "Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension."

Roger Segelken | Cornell news
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>