Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Morphing membranes: Cornell-led team makes first observation of essential cellular life process

23.10.2003


Cell membranes -- the sacs encompassing the body’s living matter -- can assume a variety of shapes as they morph to engulf materials, expel others and assemble themselves into tissues.


A giant unilamellar vesicle (GUV) designed to mimic so-called rafts of lipid segregation in cell plasma membranes, when examined under multiphoton fluorescence microscopy, reveals boundaries (in blue) between optically resolvable domains (red). The GUV, made of sphingomyelin, cholesterol and another phospholipid, is approximately 30 micrometers in diameter. Copyright © Nature. Photomicrograph by DRBIO/Cornell.



In the past it was possible for theoreticians only to analyze the thermodynamic forces behind membrane shape-shifting. But now a team of biophysicists from Cornell University, the National Institutes of Health and the W.M. Keck Foundation has been able to watch the sacs, or vesicles, reshaping themselves under the light of multiphoton three-dimensional microscopy. The forces behind the membrane morphing, the researchers say, is akin to a party entertainer shaping balloon animals by tensioning the surfaces.

Their report on observing the membranes -- a laboratory-grown mixture of phospholipids and cholesterol -- being reshaped into two separate, two-dimensional liquid phases, or "rafts,"


appears in the latest issue of the journal Nature (Oct. 23, 2003; vol. 425, pp. 821-824) and is illustrated on the magazine’s cover. The findings, say the researchers, should help cell biologists understand the functions of cell membranes that are important to human health.

"This is the first experiment to show interphase energetics influencing membrane geometries," says Cornell professor of applied physics Watt W. Webb, leader of the team. Tobias Baumgart, Cornell postdoctoral researcher, developed and analyzed the new experiments, and Samuel T. Hess of the National Institute of Child Health and Human Development, computed the theoretical shape "fits."

The interactions observed between separate phases of shape-shifting fluid membranes generally confirmed predictions made by German theoretician Reinhard Lipowsky and his colleagues. The observations also enabled measurement of the energetic tensions of the interphase lines separating the membrane rafts. In the immune system, defending macrophages engulf microbes and enclose the invaders in vesicles. "The same physical processes that we see in model membranes systems may be involved in controlling the budding and fission of these vesicles in cells," Baumgart says.

Molecular rafts of different compositions are believed to be involved in cell-membrane processes, Webb says, "but the physics of raft formation is not well understood. We hope our experiments -- based on 3-D-resolved multiphoton microscopy to illuminate membrane domains and transition behavior -- will encourage others to join in this study."

Baumgart emphasizes that balloon animals are not a perfect analogy for shape-shifting vesicles. "For one thing, rubber balloons stretch and vesicle membranes don’t, but seeing these shapes from a distance, we can imagine some of the same forces at work," he says.

Zooming in with the multiphoton microscope, Baumgart and his colleagues looked at a simplified model of cell membranes. In nature, vesicles are a complex mixture of several kinds of lipids, proteins and impurities; Baumgart’s laboratory-grown vesicles were made of just three kinds of lipids -- sphingomyelin, dioleylphosphatidylcholine and cholesterol. Fluorescent dyes that light up under the microscope’s laser beam were used to label different membrane phases either red or blue. The researchers found that, depending on the temperature, a cell membrane can have several fluid phases with different physical properties at the same time -- something like oil and water on the same surface.

Baumgart says the simplified vesicles produced a wide assortment of exotic shapes and structures as the temperature was changed, processes that appear to involve the disappearance of boundary-line tension as the two phases merge into a single one at higher temperatures.

The study was supported, in part, by a National Institutes of Health grant to the Developmental Resource for Biophysical Imaging Opto-Electronics (DRBIO) at Cornell and by a Keck Foundation grant to Baumgart. Multiphoton microscopy is a patented process developed at Cornell by Webb, who also is the Eckert Professor in Engineering and director of DRBIO, and by Winfried Denk, who now is a director at Germany’s Max-Planck-Institut für Medizinische Forschung Biomedizinische Optik.

The title of the Nature article is "Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension."

Roger Segelken | Cornell news
Further information:
http://www.news.cornell.edu/releases/Oct03/Biomembrane.hrs.html
http://www.drbio.cornell.edu/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>