Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Morphing membranes: Cornell-led team makes first observation of essential cellular life process

23.10.2003


Cell membranes -- the sacs encompassing the body’s living matter -- can assume a variety of shapes as they morph to engulf materials, expel others and assemble themselves into tissues.


A giant unilamellar vesicle (GUV) designed to mimic so-called rafts of lipid segregation in cell plasma membranes, when examined under multiphoton fluorescence microscopy, reveals boundaries (in blue) between optically resolvable domains (red). The GUV, made of sphingomyelin, cholesterol and another phospholipid, is approximately 30 micrometers in diameter. Copyright © Nature. Photomicrograph by DRBIO/Cornell.



In the past it was possible for theoreticians only to analyze the thermodynamic forces behind membrane shape-shifting. But now a team of biophysicists from Cornell University, the National Institutes of Health and the W.M. Keck Foundation has been able to watch the sacs, or vesicles, reshaping themselves under the light of multiphoton three-dimensional microscopy. The forces behind the membrane morphing, the researchers say, is akin to a party entertainer shaping balloon animals by tensioning the surfaces.

Their report on observing the membranes -- a laboratory-grown mixture of phospholipids and cholesterol -- being reshaped into two separate, two-dimensional liquid phases, or "rafts,"


appears in the latest issue of the journal Nature (Oct. 23, 2003; vol. 425, pp. 821-824) and is illustrated on the magazine’s cover. The findings, say the researchers, should help cell biologists understand the functions of cell membranes that are important to human health.

"This is the first experiment to show interphase energetics influencing membrane geometries," says Cornell professor of applied physics Watt W. Webb, leader of the team. Tobias Baumgart, Cornell postdoctoral researcher, developed and analyzed the new experiments, and Samuel T. Hess of the National Institute of Child Health and Human Development, computed the theoretical shape "fits."

The interactions observed between separate phases of shape-shifting fluid membranes generally confirmed predictions made by German theoretician Reinhard Lipowsky and his colleagues. The observations also enabled measurement of the energetic tensions of the interphase lines separating the membrane rafts. In the immune system, defending macrophages engulf microbes and enclose the invaders in vesicles. "The same physical processes that we see in model membranes systems may be involved in controlling the budding and fission of these vesicles in cells," Baumgart says.

Molecular rafts of different compositions are believed to be involved in cell-membrane processes, Webb says, "but the physics of raft formation is not well understood. We hope our experiments -- based on 3-D-resolved multiphoton microscopy to illuminate membrane domains and transition behavior -- will encourage others to join in this study."

Baumgart emphasizes that balloon animals are not a perfect analogy for shape-shifting vesicles. "For one thing, rubber balloons stretch and vesicle membranes don’t, but seeing these shapes from a distance, we can imagine some of the same forces at work," he says.

Zooming in with the multiphoton microscope, Baumgart and his colleagues looked at a simplified model of cell membranes. In nature, vesicles are a complex mixture of several kinds of lipids, proteins and impurities; Baumgart’s laboratory-grown vesicles were made of just three kinds of lipids -- sphingomyelin, dioleylphosphatidylcholine and cholesterol. Fluorescent dyes that light up under the microscope’s laser beam were used to label different membrane phases either red or blue. The researchers found that, depending on the temperature, a cell membrane can have several fluid phases with different physical properties at the same time -- something like oil and water on the same surface.

Baumgart says the simplified vesicles produced a wide assortment of exotic shapes and structures as the temperature was changed, processes that appear to involve the disappearance of boundary-line tension as the two phases merge into a single one at higher temperatures.

The study was supported, in part, by a National Institutes of Health grant to the Developmental Resource for Biophysical Imaging Opto-Electronics (DRBIO) at Cornell and by a Keck Foundation grant to Baumgart. Multiphoton microscopy is a patented process developed at Cornell by Webb, who also is the Eckert Professor in Engineering and director of DRBIO, and by Winfried Denk, who now is a director at Germany’s Max-Planck-Institut für Medizinische Forschung Biomedizinische Optik.

The title of the Nature article is "Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension."

Roger Segelken | Cornell news
Further information:
http://www.news.cornell.edu/releases/Oct03/Biomembrane.hrs.html
http://www.drbio.cornell.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>