Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vision-producing cells fail ’taste-test,’ treat key light-detecting molecules identically

23.10.2003


Johns Hopkins scientists have discovered that the eye’s vision-producing rods and cones cannot tell the difference between their respective light-detecting molecules. The findings appeared in a recent issue of Nature.



At the heart of the researchers’ side-by-side comparison is the quest to solve a fundamental mystery of vision: how rods and cones have such different sensitivities to light despite using very similar processes to detect it.

Rods function in near darkness, while rarer cones function in bright light, providing vibrant color vision. In each cell type, the process of forming vision begins when light activates a cell-specific molecule, called a visual pigment, and ends when the cell emits an electrical signal.


To set up the "taste test," the Hopkins researchers created frogs whose rods contained, in addition to their usual pigment, a pigment found only in cones. The researchers expected the rods to treat the two pigments differently -- picking up signals only from its native pigment and spurning the other -- or to behave a little like cones.

"Surprisingly, the cell’s response to light was identical regardless of which pigment was activated," says King Wai Yau, Ph.D., professor of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "It’s as though the label of ’rod’ pigment and ’cone’ pigment is gone. The pigments alone do not explain the cells’ functional differences."

Some scientists had speculated that the pigment defines a cell’s role in vision, making a rod, a rod or a cone, a cone. Until now, however, no experiments have measured whether starting the process with the "wrong" pigment affects the cell’s critical characteristics -- the size and shape of the electrical signals it produces.

Studying individual rods containing both the rod pigment, called rhodopsin, and a cone pigment (called human red cone pigment), the Johns Hopkins scientists discovered for the first time that rod machinery treats both pigments the same. The findings prove that functional differences between rods and cones stem in part from the cellular environments they offer, rather than inherent differences in their pigments, says Yau, who is also a Howard Hughes Medical Institute investigator.

Both pigments detect light by absorbing it and changing their structures in specific ways (called isomerization), thereby triggering events that generate an electrical signal. The pigment molecules then relax and eventually return to their original forms, ready to start the process anew.

Cone pigment relaxes 10 times faster than rod pigment, which led many scientists to assume that this timing difference would explain rods’ and cones’ different sensitivities. However, the Hopkins team showed that both pigments were "turned off" at the same time when in the same cell, well before either pigment relaxed, says Vladimir Kefalov, Ph.D., a postdoctoral fellow in neuroscience.

The real off-switch turns out to be addition of a phosphate group to the activated pigment, and subsequent binding by a protein called arrestin, says Yingbin Fu, Ph.D., a Howard Hughes postdoctoral fellow in neuroscience. Even though rods and cones each have their own phosphate-adding enzyme, the rod version recognizes the cone pigment as an equally appropriate target, says Yau. In separate experiments using a mutant version of the cone pigment that couldn’t be phosphorylated, the rod did in fact produce a longer signal.

Only one inherent characteristic of the cone pigment -- its instability -- seemed to contribute to rods’ and cones’ sensitivity differences. Unlike rod pigment, cone pigment spontaneously changes its shape even without exposure to light, causing cones to generate false signals that reduces their sensitivity. Through a number of calculations, Kafelov determined that, in primates, this cone pigment "noise" could account for roughly half of the normal sensitivity difference between cones and rods.


The experiments were funded by the National Institutes of Health and the Howard Hughes Medical Institute. Authors on the paper are Kefalov, Fu, Yau and Nicholas Marsh-Armstrong, all of Johns Hopkins. Marsh-Armstrong is also affiliated with the Kennedy Krieger Institute.

On the Web:
Nature, Oct. 2, 2003
http://www.nature.com/nature

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nature

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>