Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vision-producing cells fail ’taste-test,’ treat key light-detecting molecules identically


Johns Hopkins scientists have discovered that the eye’s vision-producing rods and cones cannot tell the difference between their respective light-detecting molecules. The findings appeared in a recent issue of Nature.

At the heart of the researchers’ side-by-side comparison is the quest to solve a fundamental mystery of vision: how rods and cones have such different sensitivities to light despite using very similar processes to detect it.

Rods function in near darkness, while rarer cones function in bright light, providing vibrant color vision. In each cell type, the process of forming vision begins when light activates a cell-specific molecule, called a visual pigment, and ends when the cell emits an electrical signal.

To set up the "taste test," the Hopkins researchers created frogs whose rods contained, in addition to their usual pigment, a pigment found only in cones. The researchers expected the rods to treat the two pigments differently -- picking up signals only from its native pigment and spurning the other -- or to behave a little like cones.

"Surprisingly, the cell’s response to light was identical regardless of which pigment was activated," says King Wai Yau, Ph.D., professor of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "It’s as though the label of ’rod’ pigment and ’cone’ pigment is gone. The pigments alone do not explain the cells’ functional differences."

Some scientists had speculated that the pigment defines a cell’s role in vision, making a rod, a rod or a cone, a cone. Until now, however, no experiments have measured whether starting the process with the "wrong" pigment affects the cell’s critical characteristics -- the size and shape of the electrical signals it produces.

Studying individual rods containing both the rod pigment, called rhodopsin, and a cone pigment (called human red cone pigment), the Johns Hopkins scientists discovered for the first time that rod machinery treats both pigments the same. The findings prove that functional differences between rods and cones stem in part from the cellular environments they offer, rather than inherent differences in their pigments, says Yau, who is also a Howard Hughes Medical Institute investigator.

Both pigments detect light by absorbing it and changing their structures in specific ways (called isomerization), thereby triggering events that generate an electrical signal. The pigment molecules then relax and eventually return to their original forms, ready to start the process anew.

Cone pigment relaxes 10 times faster than rod pigment, which led many scientists to assume that this timing difference would explain rods’ and cones’ different sensitivities. However, the Hopkins team showed that both pigments were "turned off" at the same time when in the same cell, well before either pigment relaxed, says Vladimir Kefalov, Ph.D., a postdoctoral fellow in neuroscience.

The real off-switch turns out to be addition of a phosphate group to the activated pigment, and subsequent binding by a protein called arrestin, says Yingbin Fu, Ph.D., a Howard Hughes postdoctoral fellow in neuroscience. Even though rods and cones each have their own phosphate-adding enzyme, the rod version recognizes the cone pigment as an equally appropriate target, says Yau. In separate experiments using a mutant version of the cone pigment that couldn’t be phosphorylated, the rod did in fact produce a longer signal.

Only one inherent characteristic of the cone pigment -- its instability -- seemed to contribute to rods’ and cones’ sensitivity differences. Unlike rod pigment, cone pigment spontaneously changes its shape even without exposure to light, causing cones to generate false signals that reduces their sensitivity. Through a number of calculations, Kafelov determined that, in primates, this cone pigment "noise" could account for roughly half of the normal sensitivity difference between cones and rods.

The experiments were funded by the National Institutes of Health and the Howard Hughes Medical Institute. Authors on the paper are Kefalov, Fu, Yau and Nicholas Marsh-Armstrong, all of Johns Hopkins. Marsh-Armstrong is also affiliated with the Kennedy Krieger Institute.

On the Web:
Nature, Oct. 2, 2003

Joanna Downer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>