Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researcher discovers ’control room’ that regulates immune responses

22.10.2003


The approximately 50 million people in the U.S. who suffer from autoimmune diseases like HIV/AIDS, multiple sclerosis, and arthritis, may soon be able to control their immune responses, thanks to a breakthrough discovery by a researcher at the University of British Columbia in Vancouver, Canada.



Wilfred Jefferies, a professor at UBC’s Biotechnology Laboratory, has discovered and characterized the mechanics of a cellular pathway that triggers immune responses. He and his team have also uncovered a specialized cell substructure, or organelle, that dictates exactly how the immune system will be activated.

"This discovery opens the door to the immune system control room," says Jefferies, who is also a member of UBC’s Biomedical Research Centre. "We’ve found a mechanism that appears to act like a dial – it can turn immune system response up or down."


Jefferies believes that it will take about five years for scientists to use this information to create new therapies – such as medication or vaccines – to regulate immune responses in humans.

The findings have enormous implications for patients because treatment may be targeted by adjusting the "dial", says Jefferies. Immune responses may be increased to fight infection or reduced to help the body accept transplanted tissue or organs.

The work was recently published online in Nature Immunology and will be the topic of an editorial when the journal appears on newsstands in November.

The research findings can be used immediately to test exactly how the immune system responds to a variety of pathogenic organisms, including bacteria, viruses and tumours, says Jefferies, who is a member of UBC’s departments of Microbiology and Immunology, Medical Genetics and Zoology.

Jefferies’ research focuses on dendritic cells. A network of specialized cells, dendritic cells act as sentinels of the immune system, detecting and relaying information about illness-causing organisms or pathogens. Jefferies and his team have identified a new organelle within dendritic cells that sorts pathogens without being harmed by them and controls signals given to the immune system. The signals turn immune responses up or down, according to the type of pathogen encountered.

The immune system protects the body from potentially harmful substances such as microorganisms, toxins, cancer cells, and blood or tissues from another person. Immune system disorders are conditions where the immune response is over-active, reduced or absent.


The research team includes UBC graduate students Greg Lizee, Jacqueline Tiong, Meimei Tian and Kaan Biron as well as post-doctoral fellow Gene Basha. UBC researchers, who conduct more than 5,225 investigations annually, attracted $377 million in research funding in 2002 / 2003.

NB. Editors: Electronic images of Dr. Jefferies as well as dendrite cells are available. A brief biography is attached.

Wilfred Jefferies

Prof. Wilfred Jefferies completed his PhD at Oxford University after obtaining a BSc from University of Victoria in British Columbia.

His completed research training at centres that include Sweden’s Ludwig Institute for Cancer Research, part of the Karolinska Institute, one of Europe’s largest medical universities, as well as at the Swiss Institute for Experimental Cancer Research. In 1989, he was recruited to UBC by the late Michael Smith, 1993 Nobel Laureate in Chemistry.

Jefferies’ work has explored the function of a brain protein called melanotransferrin that plays a key role in iron transport in central nervous system. He and colleagues discovered a link between the action of this molecule and Alzheimer’s disease. Another area of interest is looking at how the immune system detects aggressive cancer cells and how viruses become recognized by host lymphocytes. He has been involved in using TAP genes to resurrect the immune response in patients with metastatic tumours and the development of new tumour vaccines.

The author of numerous publications, Jefferies is funded by major agencies such as the Canadian Institutes of Health Research, the National Cancer Institute of Canada and the Natural Sciences and Engineering Research Council of Canada.

Hilary Thomson | EurekAlert!
Further information:
http://www.ubc.ca/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>