Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researcher discovers ’control room’ that regulates immune responses

22.10.2003


The approximately 50 million people in the U.S. who suffer from autoimmune diseases like HIV/AIDS, multiple sclerosis, and arthritis, may soon be able to control their immune responses, thanks to a breakthrough discovery by a researcher at the University of British Columbia in Vancouver, Canada.



Wilfred Jefferies, a professor at UBC’s Biotechnology Laboratory, has discovered and characterized the mechanics of a cellular pathway that triggers immune responses. He and his team have also uncovered a specialized cell substructure, or organelle, that dictates exactly how the immune system will be activated.

"This discovery opens the door to the immune system control room," says Jefferies, who is also a member of UBC’s Biomedical Research Centre. "We’ve found a mechanism that appears to act like a dial – it can turn immune system response up or down."


Jefferies believes that it will take about five years for scientists to use this information to create new therapies – such as medication or vaccines – to regulate immune responses in humans.

The findings have enormous implications for patients because treatment may be targeted by adjusting the "dial", says Jefferies. Immune responses may be increased to fight infection or reduced to help the body accept transplanted tissue or organs.

The work was recently published online in Nature Immunology and will be the topic of an editorial when the journal appears on newsstands in November.

The research findings can be used immediately to test exactly how the immune system responds to a variety of pathogenic organisms, including bacteria, viruses and tumours, says Jefferies, who is a member of UBC’s departments of Microbiology and Immunology, Medical Genetics and Zoology.

Jefferies’ research focuses on dendritic cells. A network of specialized cells, dendritic cells act as sentinels of the immune system, detecting and relaying information about illness-causing organisms or pathogens. Jefferies and his team have identified a new organelle within dendritic cells that sorts pathogens without being harmed by them and controls signals given to the immune system. The signals turn immune responses up or down, according to the type of pathogen encountered.

The immune system protects the body from potentially harmful substances such as microorganisms, toxins, cancer cells, and blood or tissues from another person. Immune system disorders are conditions where the immune response is over-active, reduced or absent.


The research team includes UBC graduate students Greg Lizee, Jacqueline Tiong, Meimei Tian and Kaan Biron as well as post-doctoral fellow Gene Basha. UBC researchers, who conduct more than 5,225 investigations annually, attracted $377 million in research funding in 2002 / 2003.

NB. Editors: Electronic images of Dr. Jefferies as well as dendrite cells are available. A brief biography is attached.

Wilfred Jefferies

Prof. Wilfred Jefferies completed his PhD at Oxford University after obtaining a BSc from University of Victoria in British Columbia.

His completed research training at centres that include Sweden’s Ludwig Institute for Cancer Research, part of the Karolinska Institute, one of Europe’s largest medical universities, as well as at the Swiss Institute for Experimental Cancer Research. In 1989, he was recruited to UBC by the late Michael Smith, 1993 Nobel Laureate in Chemistry.

Jefferies’ work has explored the function of a brain protein called melanotransferrin that plays a key role in iron transport in central nervous system. He and colleagues discovered a link between the action of this molecule and Alzheimer’s disease. Another area of interest is looking at how the immune system detects aggressive cancer cells and how viruses become recognized by host lymphocytes. He has been involved in using TAP genes to resurrect the immune response in patients with metastatic tumours and the development of new tumour vaccines.

The author of numerous publications, Jefferies is funded by major agencies such as the Canadian Institutes of Health Research, the National Cancer Institute of Canada and the Natural Sciences and Engineering Research Council of Canada.

Hilary Thomson | EurekAlert!
Further information:
http://www.ubc.ca/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>