Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State scientists’ beetle chosen for national genome sequencing project

21.10.2003


The red flour beetle can be a pest in massive grain elevators or in the 5-pound sack of flour in your kitchen. But it also can be an important organism in the field of genetic research.



As the result of research performed by scientists from Kansas State University and the U.S. Department of Agriculture’s Grain Marketing and Production Research Lab in Manhattan, the red flour beetle has been selected from a long list of nominated organisms for genome sequencing by the National Human Genome Research Institute, an arm of the National Institutes of Health.

As in the case of the human genome, the description of the entire genetic information of the red flour beetle will facilitate a number of important new experimental approaches, according to Susan Brown, associate professor of biology at K-State and principal investigator for the red flour beetle genome project.


Co-investigators on the project include Rob Denell, university distinguished professor of biology and director of the Terry C. Johnson Center for Basic Cancer Research, and Richard Beeman, adjunct professor of entomology at K-State and a research entomologist at the U.S. Grain Marketing and Production Research Center.

According to Brown, K-State’s selection follows many years of work to expand upon the usefulness of the flour beetle for genetic research. She said the beetle is now used in studies ranging from control of embryonic development to strategies for controlling harmful insects.

"With completion of the human genome project, the National Human Genome Research Institute has a great deal of sequencing capacity at its disposal, and has been establishing priorities for sequencing other organisms," Brown said. "Other animals given high priority for genome sequencing during the past year and a half include the chimpanzee, chicken, cow and dog. Clearly, we are in important company."

The multimillion dollar commitment by the National Human Genome Research Institute will be accompanied by a $200,000 contribution from the U.S. Department of Agriculture. The funds will be given to one of the national sequencing centers, which will then forward the sequence data to the researchers in Manhattan. The researchers will interpret the data and make the information available to the scientific community via the World Wide Web.

Susan Brown | EurekAlert!
Further information:
http://www.ksu.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>