Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State scientists’ beetle chosen for national genome sequencing project

21.10.2003


The red flour beetle can be a pest in massive grain elevators or in the 5-pound sack of flour in your kitchen. But it also can be an important organism in the field of genetic research.



As the result of research performed by scientists from Kansas State University and the U.S. Department of Agriculture’s Grain Marketing and Production Research Lab in Manhattan, the red flour beetle has been selected from a long list of nominated organisms for genome sequencing by the National Human Genome Research Institute, an arm of the National Institutes of Health.

As in the case of the human genome, the description of the entire genetic information of the red flour beetle will facilitate a number of important new experimental approaches, according to Susan Brown, associate professor of biology at K-State and principal investigator for the red flour beetle genome project.


Co-investigators on the project include Rob Denell, university distinguished professor of biology and director of the Terry C. Johnson Center for Basic Cancer Research, and Richard Beeman, adjunct professor of entomology at K-State and a research entomologist at the U.S. Grain Marketing and Production Research Center.

According to Brown, K-State’s selection follows many years of work to expand upon the usefulness of the flour beetle for genetic research. She said the beetle is now used in studies ranging from control of embryonic development to strategies for controlling harmful insects.

"With completion of the human genome project, the National Human Genome Research Institute has a great deal of sequencing capacity at its disposal, and has been establishing priorities for sequencing other organisms," Brown said. "Other animals given high priority for genome sequencing during the past year and a half include the chimpanzee, chicken, cow and dog. Clearly, we are in important company."

The multimillion dollar commitment by the National Human Genome Research Institute will be accompanied by a $200,000 contribution from the U.S. Department of Agriculture. The funds will be given to one of the national sequencing centers, which will then forward the sequence data to the researchers in Manhattan. The researchers will interpret the data and make the information available to the scientific community via the World Wide Web.

Susan Brown | EurekAlert!
Further information:
http://www.ksu.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>