Fever enzyme identified

A specific enzyme that is a central part in the regulation of body temperature has been identified by a research team at Linkoping University, Sweden. The enzyme is a potential target in the development of new and selective fever reducing drugs.

Professor Anders Blomqvist, MD David Engblom and co-authors are publishing their findings in Nature Neuroscience.

Fever is caused when small, easily diffusible molecules known as prostaglandin E2 are bonded to receptors on deep neural structures and change the brain’s thermostat. However, the prostaglandins are not produced until the specific enzyme mPGES-1 signal an ongoing inflammation somewhere in the body.

By using genetically modified mice the researchers found evidence of this function. A group of mice lacking the gene for mPGES-1 were injected with a bacterial extraction. The same injection was given to a group of wild-type mice. The result was a consistent elevation of body temperature in the wild-type group, while modified mice remained feverless.

Analyzing the content of prostaglandin E2 in the brain confirmed the result.

– The fever reducing drugs used today inhibit the formation of a wide range of substances, which explains most of side-effects such as gastritis, kidney disease and cardio-vascular symptoms. If you can aim directly at the enzyme mPGES-1 you will get a more specific effect, says Anders Blomqvist.

Media Contact

Anders Blomqvist alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors