Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Timeless’ gene found to play key role as timekeeper in mammals

17.10.2003


In 1998, scientists found the mammalian version of a gene, known as timeless, which in flies is crucial for the biological clock. However, all but one of the research groups involved determined that timeless did not have such a role in mammals. Now that research group says timeless is indeed a key timekeeper in mammals.



In a new complex molecular study of rats, published in the Oct. 17 issue of Science, researchers at the University of Illinois at Urbana-Champaign blocked the functional ability of timeless, leaving the circadian clock in disarray.

The key difference between the previous studies and this new one was the identification of two timeless proteins -- one a full-length protein and the other a shorter, incomplete version.


"There has been a lot of dispute about the role of timeless, and timeless has been generally excluded in research done since 1998," said Martha U. Gillette, the head of the department of cell and structural biology at Illinois. In the initial studies, her lab had seen differences in timeless RNA expression. The other labs had not.

The research in Gillette’s lab, led by Jessica W. Barnes and Jeffrey A. Barnes, both doctoral students, and Shelley A. Tischkau, a professor of veterinary biosciences, continued with the goal to decipher the previously conflicting findings.

"This paper has substantial supportive data that provides definitive evidence that timeless needs to be back in the loop," Gillette said. Much of the supporting data, in fact, is presented online to complement the material appearing in the Science paper.

The "loop" is the 24-hour circadian rhythm in the brain and cells. It consists of an automatically regulated loop of transcription and translation of gene products important for many diverse physiological functions such as sleep, metabolism and reproduction.

The earlier findings had led to the conclusion that timeless was vital only to cellular development in mammals but not to the clock. "The other labs had targeted their reagents at the end of the gene where changes in only full-length timeless are difficult to isolate due to the over-abundance of the short isoform," Jessica Barnes said. "So their results were being confounded."

Working with the whole molecule, the interaction of timeless with the five other mammalian clock genes (three forms of mPER, mClk and bmal) became clear.

In normal and control-treated brain slices from the rats’ suprachiasmatic nucleus, the site of the circadian clock, normal activity occurred in the presence of timeless. When specially designed antisense molecules were added to block it, electrical rhythms were disrupted. "When you have really low levels of timeless, you also disrupt the other clock genes," Barnes said. "You get an uncoupling. The clock is very much in disarray."

Some clock genes send positive signals, triggering mRNA production. The Illinois team theorizes that timeless and another clock gene (mPER2) work in tandem as negative signals to shut down mRNA production during the 24-hour cycle. With timeless back in the mammalian equation, it means that the clock genes of Drosophila and mammals correspond and function similarly.

"This conservation of timeless is very important, that what is happening in Drosophila is holding true in the mammal," Gillette said. "Without timeless, you are missing a whole set of gears in an intricate mechanism."

Other contributors to the paper were postdoctoral researchers Jennifer W. Mitchell and Penny W. Burgoon, both in cell and structural biology, and Jason R. Hickok, a doctoral student in cell and structural biology.


The U.S. Department of Health and Human Services, the University of Illinois Scholars Program and the Illinois Governor’s Venture Technology Fund/Molecular & Endrocrine Pharmacology Program supported the research.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>