Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Startling deep-sea encounter with rare, massive Greenland shark

16.10.2003


Huge Greenland shark as it approaches Harbor Branch’s Johnson-Sea-Link submersible
Credit: HARBOR BRANCH/Youngbluth


Gently ramming the Johnson-Sea-Link submersible’s acrylic front sphere
Credit: HARBOR BRANCH/Youngbluth


During a recent submersible dive 3,000 feet down in the Gulf of Maine a HARBOR BRANCH scientist and sub pilot had the first face-to-face meeting ever in the deep sea with a rare Greenland shark. The docile 15-foot creature gently rammed into the submersible’s clear front sphere before turning and swimming slowly away. The entire encounter was captured on video, a clip of which can be viewed by clicking under the shark’s photo at: http://www.at-sea.org/missions/maineevent4/day14.html

HARBOR BRANCH researcher Marsh Youngbluth and his team were in the region studying a large jellyfish known as Nanomia cara, which can cause commercial fish catch declines by out-competing fish larvae for certain foods and by filling and fouling fish nets. He and submersible pilot Tim Askew, Jr. were startled by the huge shark’s appearance and feared at first that it might damage the submersible or its scientific sampling equipment, though no harm was done. After the shark swam away from the submersible Askew followed it for several minutes.

Though in the early 1900s Greenland sharks were fished commercially, they have rarely been captured on video and never before from a manned submersible in the deep sea or under natural conditions. All past filming encounters involved sharks lured with bait or captured on fishing lines and brought near the surface.



Greenland sharks, also called sleeper or gurry sharks, have been known to grow as long as 21 feet, and are outsized only by great white, basking, and whale sharks. Greenland sharks are poorly understood but known for their lethargic swimming and a unique fishing technique. Small marine crustaceans known as copepods generally attach themselves to the sharks’ eyes (and are visible in the new footage), possibly blinding them, but giving off light that attracts curious fish.

It is not clear how the sluggish animals are able to catch the fast-moving fish and squid commonly found in their stomachs. Some scientists have theorized that the sharks are able to swim rapidly in bursts, but there is also evidence that they are able to suck nearby fish into their mouths. During the Gulf of Maine encounter, even after ramming into HARBOR BRANCH’s submersible, the shark continued to swim slowly. Greenland sharks also eat seals, dead whales, and other animals, including in at least one documented case, an entire reindeer. They are typically found in Arctic waters at depths down to 1,800 feet, but have been recorded as far south as the coast of South Carolina and at nearly 7,000 feet down.


###
For more information please contact Mark Schrope at 772-216-0390 or schrope@hboi.edu. Photos and video of the shark encounter, which took place Sept. 25, are available to illustrate stories about HARBOR BRANCH, and can be licensed for other uses.

Mark Schrope | EurekAlert!
Further information:
http://www.at-sea.org/missions/maineevent4/day14.html
http://www.hboi.edu/

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>