Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Researchers Discover Power Behind Molecular Motors

16.10.2003


Sharyn Endow, Ph.D.
PHOTO CREDIT: Duke University Medical Center


After having demonstrated how "molecular motors" move within cells, a team of researchers led by a Duke University Medical Center scientist now believe they have discovered the power stroke that drives these motors.

Molecular motors are proteins made up of amino acids like any other protein in a cell. Unlike other proteins, however, they move along cellular highways of tiny filaments, called microtubules, as they transport nutrients around the cell or herd chromosomes during cell division.

Malfunctioning molecular motors might be responsible for some diseases such as Down’s syndrome caused by incorrect distribution of chromosomes during cell division. By understanding how motors work, how they organize chromosomes and how they lead the cell through the division process, researchers hope to be able to understand what causes these diseases and how to prevent them.



"I believe the findings of this study represent a breakthrough in our understanding of molecular motors and how they function," said Duke cell biologist Sharyn Endow, Ph.D., who published the results of the Duke research today (Oct. 16, 2003) in the European Molecular Biology Organization (EMBO) journal. She collaborated with Hee-Won Park, Ph.D., a crystallographer at St. Jude Children’s Research Hospital, Memphis to obtain the new results.

"One of the major problems facing us in the field of molecular motor research is figuring out how the motor converts chemical energy into work or movement along microtubules," she continued. "We believe we have found the mechanism for the force-producing stroke that directs the motor."

In her experiments, Endow focused on a particular motor molecule called Ncd (nonclaret disjunctional), which she discovered more than a dozen years ago. Ncd belongs to a family of molecular motors called kinesins. The Ncd motor consists of a coiled-coil "neck/stalk" region that connects two "heads," making up the molecular motor.

The researchers used two techniques -- x-ray crystallography and cryo-electron microscropy -- to visualize the structure of the Ncd motor at different stages of its movement along the microtubules. Endow explained that this movement occurs during the breakdown of ATP (adenosine triphosphate) that occurs in all cells.

ATP is a storage repository of energy for the cell – liberating energy when the chemical bonds that holds one of the phosphates on the molecule is broken by a process known as hydrolysis.

Endow found that during this process of ATP hydrolysis, the coiled-coil region of the motor changed in angle, or conformation. As a result of this conformational change, the coiled-coil region rotates relative to one of the two heads, amplifying the force produced by the motor, resulting in the working stroke of the motor.

"We were able to come up with a new crystal structure which showed that the coiled-coil domain undergoes a large rotational movement that could represent the force-producing stroke of the motor," Endow explained. "The stalk appears to be rigid and may act like a lever. This is in contrast to models for other kinesin motors, whose movement appears to be more rachet-like than lever-like."

From the time Endow first discovered Ncd in fruit flies, the little motor has been an enigma. At the time, it was the first molecular motor of its kind that moved toward the more stable, or "minus" end of microtubules. The other kinesin motor proteins moved toward the fast-growing, or "plus" end.

Endow previously showed that the normal Ncd motor moves only toward the minus end of the microtubule and that it also rotates to the right around the tubule. She made Ncd mutations that disrupted the sense of direction and created for the first time a motor that is equally likely to move to the plus end as to the minus end, and it rotates either to the right or left.

While Ncd was discovered in fruit flies, similar motors operate in all animals, including people, Endow said.

"Our hope is that by understanding how these molecular motors work, we will be able to identify why sometimes things go wrong in the reproductive process," she said. "Right now it is very difficult to do these experiments with animals more advanced than flies because they make eggs internally. That makes it difficult to observe the process. But using flies, in which the process is thought to be closely related to higher animals, we can identify the components and learn how they work."

The research was supported by the National Institutes of Health, the Human Frontiers Science Program, the St. Jude Children’s Research Hospital Cancer Center and the American Lebanese Syrian Associated Charities.

Richard Merritt | Duke University Medical Center
Further information:
http://dukemednews.org/news/article.php?id=7116

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>