Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover genes that distinguish human, nonhuman primate brains

14.10.2003


Findings shed light on the evolution of human cognition, the capacity for long lifespan and the potential for neurodegenerative disease



A research team from the Salk Institute, the Yerkes National Primate Research Center of Emory University and the University of California – Los Angeles (UCLA), has identified genes in the cerebral cortex that differ in levels of activity between humans and nonhuman primates, including chimpanzees and rhesus monkeys. These findings, which appear in the online journal of the Proceedings of the National Academy of Sciences, may provide essential clues to the unusual cognitive abilities of humans. They also may help researchers understand why humans have a longer lifespan than other primate species and yet are so vulnerable to age-related, neurodegenerative diseases.

Because the DNA sequences of humans are so similar to those of chimpanzees, scientists have long speculated that differences in the activity levels of particular genes, otherwise known as gene expression, and, as a result, the amounts of particular proteins cells produce, are what distinguish humans from chimpanzees. The recent sequencing of the human genome has led to the development of "gene chips" that enable researches to examine the expression levels of thousands of genes at a time as well as compare expression levels in different species.


Using gene chips to compare samples of the cerebral cortex of humans, chimpanzees and rhesus monkeys, the research team at the Salk, the Yerkes Center and UCLA identified 91 genes that are expressed in different amounts in humans compared to the other primate species. Upon further study, the team observed 83 of these genes showed higher levels of activity in humans, and as a result, regulated neural activity.

"When we looked at other tissues, such as heart and liver, we found nearly equal numbers of genes showing higher or lower levels of expression in humans as compared to chimpanzees and rhesus," said Todd Preuss, PhD, associate research professor of neuroscience at the Yerkes Research Center. "The changes in gene activity in the cortex suggest increases in the rate of brain activity, providing a basis for the evolution of the enhanced cognitive abilities in humans."

In addition to finding changes in activity-related genes, the researchers found the human brain shows increased expression of genes that protect against activity-related damage. This finding may help explain why humans have the potential to live decades longer than other primates, but also why humans are especially vulnerable to age-related, neurodegenerative diseases, such as Alzheimer’s disease.

"It is probable that the combination of long lifespan and high neural activity makes humans particularly vulnerable to neurodegenerative disease," said Mario Caceres, PhD, a postdoctoral fellow now at Emory University and lead investigator on the study. "Activity-related damage accumulates with age and has the potential to cause catastrophic breakdown late in life. By understanding how humans protect their brains from activity-related damage, we hope to better understand why those mechanisms fail."

The Yerkes National Primate Research Center of Emory University is one of eight National Primate Research Centers funded by the National Institutes of Health. The Yerkes Research Center is a multidisciplinary research institute recognized as a leader in biomedical and behavioral studies with nonhuman primates. Yerkes scientists are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Other research programs include cognitive development and decline, childhood visual defects, organ transplantation, the behavioral effects of hormone replacement therapy and social behaviors of primates. Leading researchers located worldwide seek to collaborate with Yerkes scientists.


###
We acknowledge support of the National Institute of Mental Health and the James S. McDonnell Foundation.

Kelly Duncan | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>