Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover genes that distinguish human, nonhuman primate brains


Findings shed light on the evolution of human cognition, the capacity for long lifespan and the potential for neurodegenerative disease

A research team from the Salk Institute, the Yerkes National Primate Research Center of Emory University and the University of California – Los Angeles (UCLA), has identified genes in the cerebral cortex that differ in levels of activity between humans and nonhuman primates, including chimpanzees and rhesus monkeys. These findings, which appear in the online journal of the Proceedings of the National Academy of Sciences, may provide essential clues to the unusual cognitive abilities of humans. They also may help researchers understand why humans have a longer lifespan than other primate species and yet are so vulnerable to age-related, neurodegenerative diseases.

Because the DNA sequences of humans are so similar to those of chimpanzees, scientists have long speculated that differences in the activity levels of particular genes, otherwise known as gene expression, and, as a result, the amounts of particular proteins cells produce, are what distinguish humans from chimpanzees. The recent sequencing of the human genome has led to the development of "gene chips" that enable researches to examine the expression levels of thousands of genes at a time as well as compare expression levels in different species.

Using gene chips to compare samples of the cerebral cortex of humans, chimpanzees and rhesus monkeys, the research team at the Salk, the Yerkes Center and UCLA identified 91 genes that are expressed in different amounts in humans compared to the other primate species. Upon further study, the team observed 83 of these genes showed higher levels of activity in humans, and as a result, regulated neural activity.

"When we looked at other tissues, such as heart and liver, we found nearly equal numbers of genes showing higher or lower levels of expression in humans as compared to chimpanzees and rhesus," said Todd Preuss, PhD, associate research professor of neuroscience at the Yerkes Research Center. "The changes in gene activity in the cortex suggest increases in the rate of brain activity, providing a basis for the evolution of the enhanced cognitive abilities in humans."

In addition to finding changes in activity-related genes, the researchers found the human brain shows increased expression of genes that protect against activity-related damage. This finding may help explain why humans have the potential to live decades longer than other primates, but also why humans are especially vulnerable to age-related, neurodegenerative diseases, such as Alzheimer’s disease.

"It is probable that the combination of long lifespan and high neural activity makes humans particularly vulnerable to neurodegenerative disease," said Mario Caceres, PhD, a postdoctoral fellow now at Emory University and lead investigator on the study. "Activity-related damage accumulates with age and has the potential to cause catastrophic breakdown late in life. By understanding how humans protect their brains from activity-related damage, we hope to better understand why those mechanisms fail."

The Yerkes National Primate Research Center of Emory University is one of eight National Primate Research Centers funded by the National Institutes of Health. The Yerkes Research Center is a multidisciplinary research institute recognized as a leader in biomedical and behavioral studies with nonhuman primates. Yerkes scientists are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Other research programs include cognitive development and decline, childhood visual defects, organ transplantation, the behavioral effects of hormone replacement therapy and social behaviors of primates. Leading researchers located worldwide seek to collaborate with Yerkes scientists.

We acknowledge support of the National Institute of Mental Health and the James S. McDonnell Foundation.

Kelly Duncan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>