Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene necessary for plant growth and development discovered

13.10.2003


By taking a fresh approach to an old problem, University of California, San Diego biologists and colleagues at other institutions have found a new gene essential for plant growth, a discovery that could lead to the design of better herbicides and even novelty plants.


Images of normal plant (above) and plant exposed to chemical that inactivates the newly discovered gene SIR1 (below)
Credit: Yunde Zhao, UCSD




Despite 100 years of research on auxin, a plant hormone essential in regulating plants’ development and responses to their surroundings, including the ability of plants to grow toward light, much remains unknown about how auxin is synthesized and how it works. A new approach known as “chemical genetics,” in which chemicals are used to regulate activities of proteins produced by specific genes, has revealed a previously unknown gene, SIR1, which functions to keep the effects of auxin in check. The UCSD scientists say that one implication of their discovery is the potential development of environmentally safe herbicides from chemicals that impede the action of auxin by over-activating the SIR1 gene.

A paper featured on the cover of the October 10, 2003 issue of Plant Physiology details the chemical genetic approach. The discovery of the SIR1 gene was reported in the August 22nd issue of Science.


“By using chemical genetics we have been able to identify a new gene that regulates the important plant hormone auxin,” explains Yunde Zhao, assistant professor of biology at UCSD, who was largely responsible for the work. “This finding can be applied to manipulating plant growth, including the development of a new generation of herbicides. Chemical genetics shows a great deal of promise for helping us understand aspects of plant biology, like how auxin is synthesized and controlled, where genetic methods used by researchers until now only had limited success.”

Interestingly, the researchers found that if, at different times, they applied and withdrew the chemical that inactivated the SIR1 protein, this led to strangely shaped plants because SIR1 usually dampens the effect of auxin. Auxin plays important roles in the development of roots, stems and leaves, but either too much or too little auxin interferes with development. Zhao thinks this could have implications for the design of novel flowers and other plant structures.

“Some had leaves that developed into striking trumpet-like shapes,” he says.

Chemical genetics has two major advantages over the genetic approaches traditionally used. First, chemical genetics can permit a researcher to study the effects of more subtle gene changes than eliminating a gene. This is important because a gene may play more than one role, at multiple times during development. If the gene has an essential role early in development, then eliminating it will kill the organism, preventing researchers from discovering other roles for that gene later in development. Since chemical genetics is reversible, by simply stopping the application of a chemical that inactivates or activates a protein produced by a gene, it can be used to study what a gene does at different stages in development.

A second advantage of chemical genetics has to do with the fact that the molecules used can often inactivate related proteins with the same function. A problem with the traditional approach of eliminating a particular gene to determine its function is that if there are two or more genes with the same or similar functions, removing one of those genes may have no apparent effect on the health of the organism. This gene redundancy is more common in plants than in animals.

“About 70% of the genes in the model plant we used in our study, Arabidopsis, may have at least two copies,” Zhao points out. “This is a problem with traditional genetic approaches, but with chemical genetics a small molecule will most likely be able to inactivate all members of a closely related family of proteins provided that they operate by a similar mechanism.”

Both gene redundancy and the lethal effect of eliminating genes essential for plant development have plagued biologists studying auxin for many years. Because chemical genetics can be useful in solving these two problems, Zhao thinks that the application of chemical genetics will likely lead to rapid advances in the field.

While the technique of chemical genetics had been used by researchers working on yeast, bacteria and mammalian cells in culture, its application in plant biology is still at an infancy stage. Zhao cites his background as a biochemist as helping him to come with a fresh perspective to the auxin problem.

“When I started working on plants, I didn’t have much knowledge in plant biology,” Zhao says. “So I wasn’t afraid of taking on those projects the plant biologists didn’t think would work.”

The SIR1 work was initiated by Zhao in the laboratory of Joanne Chory, a Howard Hughes Medical Institute investigator at the Salk Institute for Biological Studies, and continued in Zhao’s own lab at UCSD in collaboration with Xinhua Dai, research associate in biology at UCSD; Helen Blackwell, now assistant professor of chemistry at University of Wisconsin, Madison; and Stuart Schreiber, professor of chemistry at Harvard University and an HHMI investigator. The work was supported by the National Institutes of Health and the Howard Hughes Medical Institute. The Plant Physiology paper on chemical genetic approaches to plant biology was written in collaboration with Helen Blackwell, with support from the NIH.

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/auxingenes.htm
http://www.sdtelecom.org/
http://www.plantphysiol.org/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>