Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene necessary for plant growth and development discovered

13.10.2003


By taking a fresh approach to an old problem, University of California, San Diego biologists and colleagues at other institutions have found a new gene essential for plant growth, a discovery that could lead to the design of better herbicides and even novelty plants.


Images of normal plant (above) and plant exposed to chemical that inactivates the newly discovered gene SIR1 (below)
Credit: Yunde Zhao, UCSD




Despite 100 years of research on auxin, a plant hormone essential in regulating plants’ development and responses to their surroundings, including the ability of plants to grow toward light, much remains unknown about how auxin is synthesized and how it works. A new approach known as “chemical genetics,” in which chemicals are used to regulate activities of proteins produced by specific genes, has revealed a previously unknown gene, SIR1, which functions to keep the effects of auxin in check. The UCSD scientists say that one implication of their discovery is the potential development of environmentally safe herbicides from chemicals that impede the action of auxin by over-activating the SIR1 gene.

A paper featured on the cover of the October 10, 2003 issue of Plant Physiology details the chemical genetic approach. The discovery of the SIR1 gene was reported in the August 22nd issue of Science.


“By using chemical genetics we have been able to identify a new gene that regulates the important plant hormone auxin,” explains Yunde Zhao, assistant professor of biology at UCSD, who was largely responsible for the work. “This finding can be applied to manipulating plant growth, including the development of a new generation of herbicides. Chemical genetics shows a great deal of promise for helping us understand aspects of plant biology, like how auxin is synthesized and controlled, where genetic methods used by researchers until now only had limited success.”

Interestingly, the researchers found that if, at different times, they applied and withdrew the chemical that inactivated the SIR1 protein, this led to strangely shaped plants because SIR1 usually dampens the effect of auxin. Auxin plays important roles in the development of roots, stems and leaves, but either too much or too little auxin interferes with development. Zhao thinks this could have implications for the design of novel flowers and other plant structures.

“Some had leaves that developed into striking trumpet-like shapes,” he says.

Chemical genetics has two major advantages over the genetic approaches traditionally used. First, chemical genetics can permit a researcher to study the effects of more subtle gene changes than eliminating a gene. This is important because a gene may play more than one role, at multiple times during development. If the gene has an essential role early in development, then eliminating it will kill the organism, preventing researchers from discovering other roles for that gene later in development. Since chemical genetics is reversible, by simply stopping the application of a chemical that inactivates or activates a protein produced by a gene, it can be used to study what a gene does at different stages in development.

A second advantage of chemical genetics has to do with the fact that the molecules used can often inactivate related proteins with the same function. A problem with the traditional approach of eliminating a particular gene to determine its function is that if there are two or more genes with the same or similar functions, removing one of those genes may have no apparent effect on the health of the organism. This gene redundancy is more common in plants than in animals.

“About 70% of the genes in the model plant we used in our study, Arabidopsis, may have at least two copies,” Zhao points out. “This is a problem with traditional genetic approaches, but with chemical genetics a small molecule will most likely be able to inactivate all members of a closely related family of proteins provided that they operate by a similar mechanism.”

Both gene redundancy and the lethal effect of eliminating genes essential for plant development have plagued biologists studying auxin for many years. Because chemical genetics can be useful in solving these two problems, Zhao thinks that the application of chemical genetics will likely lead to rapid advances in the field.

While the technique of chemical genetics had been used by researchers working on yeast, bacteria and mammalian cells in culture, its application in plant biology is still at an infancy stage. Zhao cites his background as a biochemist as helping him to come with a fresh perspective to the auxin problem.

“When I started working on plants, I didn’t have much knowledge in plant biology,” Zhao says. “So I wasn’t afraid of taking on those projects the plant biologists didn’t think would work.”

The SIR1 work was initiated by Zhao in the laboratory of Joanne Chory, a Howard Hughes Medical Institute investigator at the Salk Institute for Biological Studies, and continued in Zhao’s own lab at UCSD in collaboration with Xinhua Dai, research associate in biology at UCSD; Helen Blackwell, now assistant professor of chemistry at University of Wisconsin, Madison; and Stuart Schreiber, professor of chemistry at Harvard University and an HHMI investigator. The work was supported by the National Institutes of Health and the Howard Hughes Medical Institute. The Plant Physiology paper on chemical genetic approaches to plant biology was written in collaboration with Helen Blackwell, with support from the NIH.

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/auxingenes.htm
http://www.sdtelecom.org/
http://www.plantphysiol.org/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>