Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An efficient and simple method for varietal identification of the cherry tree

10.10.2003


Professor Ana Wünsch Blanco has presented her PhD, at the Public University of Navarre, on the application of molecular technologies in the identification and enhancement of the cherry fruit tree.



The application of molecular technologies in the identification and enhancement of the cherry tree is not something new. In fact, the varietal identification of fruit species has been accompanied, in the past few years, by the appearance of DNA markers. This has enabled an investigation of the genome of each variety, independently of the state of development and the phenological state of the tree.

Other research has used these techniques for the identification of peach trees. The significance of the study in the cherry tree arises from the fact that this is one of the economically important stone-fruit species and, moreover, Spain is one of the most important world producers of this fruit. However, this importance is not reflected in the exhaustive studies on the identification of genotypes of the different varieties of the species.


In this paper, the researcher develops an efficient method for the identification of cherry varieties based on microsatellite-type molecular markers.

More than 100 varieties of cherry

Once the method is designed it is used to identify the collection of cherry tree varieties of the Zaragoza Food Research Service (SIA)where Ana Wunsch is currently working. Moreover, the identification of 28 genotypes of the Extremadura Regional Government collection of cherry tree patterns in Barrado (Cáceres) and another 17 genotypes from the Zaragoza SIA collection. The results have been very good given that current methods for the varietal identification of the cherry tree have been accelerated and optimised.

The PhD also includes a study of the pollen-pistil incompatibility feature in the cherry tree. According to this, the varieties of auto-incompatible cherry trees require the presence of pollinating trees, pollen donors compatible for production and, therefore, this compatibility feature and the acquisition of auto-compatible varieties is an important aim for improvement in this species.

A system has been established for the identification of incompatibility groups in this species and for the identification of a auto-compatible mutant which may be used in species enhancement programmes. This has made easier and has improved the establishment of protocols for the identification and early selection of auto-compatibility and its subsequent transference to the production sector.

Genetic similitude by geographic origin

This research has enabled the establishment of profiles of genotypes of the various varieties and patterns of the three above-mentioned collections and the study of the genetic similitude between them. Thus, it has been observed that the oldest varieties of cherry tree used as parent lines in the improvement programmes are grouped together for genetic similitude into two groups which correspond to their geographic origin: varieties originating in southern Europe and varieties originating in Central Europe and North America.

These results concur with the way in which varieties have been selected at a local level and with the movement of vegetable material of this species, given that it was mainly the Central European varieties that were taken to North America.

Moreover, with respect to the traditional varieties from the Jerte Valley in Extremadura, researchers have observed that are more genetically similar to each other than other varieties introduced at a later date, indicating that a group of local, autochthonous varieties exists which can be distinguished from the rest of the cultivated varieties which have been selected empirically by farmers in the area over the centuries. Knowledge and identification of this germoplasm will be of use for its future conservation.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com
http://www.unavarra.es

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>