Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue team solves structure of West Nile virus

10.10.2003


Purdue University biologists have determined the structure of the West Nile virus, a development that could greatly augment our understanding of the virus’ life cycle.


This figure shows a surface-shaded image of the West Nile virus particle produced by Purdue University biologists using cryoelectron microscopy. The surface is composed of proteins that enable the virus to bind with and invade a host cell. The particle is approximately 50 nanometers in diameter, or about 1/1000th of the width of a human hair. (Purdue Department of Biological Sciences image)


This image shows the orientation of the envelope protein molecules that compose the surface of a West Nile virus particle. The major surface protein is composed of three domains color-coded pink, yellow and blue. The proteins self-assemble in a host cell, forming a well-organized geometric shape. Knowledge of the proteins’ structure could help scientists in the effort to develop antiviral agents. (Purdue Department of Biological Sciences image)



Using cryoelectron microscopy and advanced imaging techniques, the Purdue team has determined the orientation of the major surface proteins in a West Nile viral particle. Because these proteins are instrumental in allowing the virus to bind to and invade a host cell, the research could be a step forward in combating the deadly mosquito-borne disease.

"We can now clearly understand how these proteins interact with one another," said Richard J. Kuhn, a professor of biological sciences in Purdue’s School of Science. "We can’t cure West Nile yet, but we can now start thinking about how to interfere with these interactions, which could be a key to stopping the infection’s progress."


The team’s work appears in Friday’s (10/10) edition of Science.

Viruses are among the smallest of biological entities, containing only essential amounts of genetic material that allow a virus to take over a victim cell’s functions. As West Nile develops inside a host cell, several layers of protein molecules assemble themselves around the genetic material, forming a protective shell. The outer layer of proteins is often arranged in an intricate pattern of interlocked molecules that can give the particle’s surface the appearance of a lattice or, in the case of West Nile, the fabric of a herringbone jacket. When the mature West Nile virus particle emerges, it is these surface proteins that interact with another cell’s surface so the next invasion cycle can begin.

"The West Nile virus is formed from three protein types," Kuhn said. "After the virus assembles in its host cell, these protein molecules fit together like a jigsaw puzzle and form a well-ordered symmetrical particle. From the structure, we now know, essentially, how the major sets of protein molecules interlock with each other chemically. Armed with this knowledge, scientists might now conceive of ways to interrupt the viral assembly process."

Adding to the knowledge base is the previous work the group has done with flaviviruses, the viral family that causes diseases including West Nile, dengue and yellow fever. The group, which is composed of researchers from Kuhn’s lab, as well as the labs of Michael Rossmann and Timothy Baker, has described the structure of other flaviviruses before (see related articles below). While this is the first time West Nile’s structure has been described, Kuhn said the group’s past work could assist with science’s understanding of this particular viral family.

"What we already know from studying other flaviviruses could give us a leg up understanding West Nile’s behavior," he said. "Dengue, for example, has a very similar structure to West Nile’s, but its surface features are sufficiently different that comparisons could help shed light on how West Nile operates."

Since it first appeared in New York City in 1999, West Nile virus has spread to 44 states, hitting the northern plains and eastern Rocky Mountains particularly hard. So far this year, there have been more than 4,400 cases and 84 deaths nationwide. The Centers for Disease Control and Prevention maintains a Web site with information on the spread of West Nile and its prevention.

While Kuhn is hopeful that the group’s work will add to the effort to contain the disease, he said much additional work will be required to understand the virus’ life cycle on the molecular level.

"Our structural map now shows only the general orientation of the proteins," he said. "What we need now is to include what you might think of as an ’inset map’ – an even smaller-scale picture that details the structure of each of the three protein varieties that make up the virus particle. Then researchers will have more insight into how the proteins bond with cells and each other."

This closer look represents the next step for Purdue’s structural virology group, which has recently received new support from the National Institutes of Health in the form of grants totaling nearly $18 million. These grants support basic research on viral infectious diseases, including West Nile.

"We currently have a 17-angstrom resolution structure," Kuhn said. "We hope to use our NIH support to get down to the 9-angstrom scale or better, as this would give us details on the individual protein molecules as well as other proteins in the virus."

The work on the West Nile virus was performed by Suchetana Mukhopadhyay, Bong-Suk Kim and Paul R. Chipman, who are associated with the labs of Rossmann and Kuhn. The group is part of the Markey Center for Structural Biology, which consists of laboratories that use a combination of cryoelectron microscopy, crystallography, nuclear magnetic resonance, biochemistry and molecular biology to elucidate the processes of viral entry, replication and pathogenesis. Approximately 100 research scientists, including 50 graduate students, comprise the Markey Center.

This work was funded by the National Institute of Allergy and Infectious Diseases.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Richard J. Kuhn, (765) 494-1164, kuhnr@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031009.Kuhn.westnile.html

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>