Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that regulate hearing link humans and fruit flies in new way

10.10.2003


Fly genetics may increase understanding of human hearing disorders



Researchers at the University of Wisconsin Medical School have found genetic evidence linking humans and fruit flies in a new way: through their hearing. The link offers the future possibility that the insect’s auditory system may serve as a model for understanding human deafness and other hearing disorders.

The scientists found that a mutated fruit fly gene controlling hearing and the mutated human counterpart gene both produced similar consequences: hearing loss as well as limb deformities and genital abnormalities. The mutated human gene is responsible for a disorder called Townes-Brocks’ syndrome. The unexpected finding was published in the Proceedings of the National Academy of Sciences Online (Sept. 2, 2003).


"We were very surprised to learn about this specific genetic similarity," said Grace Boekhoff-Falk, PhD, associate professor of anatomy, who led the study. "Developmental biologists have known that there are remarkable parallels between fruit fly and human genetics, but the parallels have been restricted to tissues and organs that existed before the evolutionary divergence of vertebrates and invertebrates, which occurred more than 600 million years ago."

Sensing mechanisms that helped ancient organisms function were thought to exist before that divergence, Boekhoff-Falk explained, but not the ability to hear. Until now, the conventional wisdom has been that hearing evolved separately in vertebrates and invertebrates. "Our data supports the novel idea that hearing already existed 600 million years ago," she said.

The fruit fly (Drosophila melanogaster) has been the object of scientific study for a century, providing fundamental information on the way genes are transmitted and the effects of genetic mutations. In the past 15 years or so, it has become clear that many genes occurring in humans are also found in fruit flies.

Some six years ago scientists were excited to find that the same gene regulates eye development in flies and humans. One promising outcome has been that researchers at UW Medical School are using the genetics of fruit fly optics to learn more about retinal degeneration and other vision disorders in humans.

"We’re hoping that our work can turn out to be equally useful for hearing researchers," said Boekhoff-Falk, adding that fly genetics also now serve as a model for Parkinson’s disease.

In the near term, scientists could use flies to identify additional genes critical to human hearing, she predicted, possibly leading to tests to screen newborns for hearing disorders. "In the longer term, it may be possible to use the knowledge to develop interventions to correct hearing disorders in children as well as hearing degeneration in adults," she said.

The current study was an outgrowth of Boekhoff-Falk’s earlier research on the fruit fly antenna, an appendage that serves as both ear and nose. Her group identified the gene (called spalt) that regulates hearing function only, which occurs in a structure on the antenna called Johnson’s organ.

"Due to the great history of fly genetics, there was ample knowledge of mutations existing in this gene, so we collected many of them and looked at their effects on mated flies," she said.

The outcome of the standard genetic pairings was improper development followed by complete failure of the auditory organ. Collaborators at the University of Iowa confirmed that the flies could not hear. The researchers also found that, as with Townes-Brocks’ syndrome in humans, the mutated gene produced limb and genital defects in the flies.

The Boekhoff-Falk team is now working on several other genes it has identified that are important in building the fly auditory apparatus. Some of the genes are also required for formation of the human ear. In addition to studying the genes themselves, the scientists look for similarities in the way the genes are regulated, patterns that reveal additional linkages between flies and humans.

The Wisconsin studies are a big piece in a slowly materializing puzzle suggesting that the earliest ancestor of humans and fruit flies possessed some structure that was capable of hearing.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>