Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging brain reduces ovulation

10.10.2003


Dutch researcher Annelieke Franke has discovered that the aging of the brain adversely affects the fertility of female rats. The scientist suspects that her research will provide insights into fertility problems of women over the age of 30.



Franke studied relatively young subfertile rats. Although the pituitary gland and ovaries of these rats still functioned normally, their brains had already started to function differently. This led Franke to conclude that the ageing of the brain reduces fertility.

Generally speaking, human brains regulate the reproductive system in the same manner as rat brains. However, an important difference is that rats still posses a significant number of oocytes after the fertile period, whereas in humans the supply is considerably depleted. This reduced supply of oocytes is the most important limiting factor for fertility in older women.


Despite this difference between humans and rats, the researcher still expects that the ageing of the brain in humans also plays a role in age-dependent reduced fertility. This knowledge could help to develop treatments for relatively young women who are subfertile. The fertility of women decreases from about the age of 30 years onwards. This can be problematic for women who wish to have a career before they have children.

Ovulation of oocytes is one of the reproductive cycle factors that is regulated by the brain. An initiating signal from the brain instructs the pituitary gland to produce more luteinising hormone (LH). A feedback mechanism from the ovaries to the brain ensures that ovulation only occurs when the follicles and oocytes are mature. Matured follicles produce large quantities of oestrogen. The brain responds to this and initiates ovulation.

The researcher revealed that this feedback mechanism no longer functions optimally in older female rats. Although the oestrogen concentrations in the blood had not changed with age, less receptors for oestrogen and progesterone were present in specific areas of the brain. Furthermore, older rats released less LH than younger rats.

High oestrogen concentrations normally lead to an increase in the number of progesterone receptors. These receptors are crucial for the occurrence of the peak in LH release. Older brains seem to be less sensitive to oestrogen. As a result of this, the LH peak attenuates and the fertility decreases.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>