Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aggregation of cloned mouse embryos improves survival rate

02.10.2003


Scientists at the University of Pennsylvania have found a novel way to boost the paltry survival rate of cloned mammals: When two genetically identical cloned mouse embryos are combined, the aggregate embryo is considerably more likely to survive to birth.



A team from Penn’s School of Veterinary Medicine reports the results in the Oct. 1 issue of the European Molecular Biology Organization Journal.

"At the blastocyst stage, an early embryonic stage just prior to implantation, mouse clones typically have a much lower than normal number of cells," said corresponding author K. John McLaughlin, assistant professor of animal biology. "When we combined two clones at the four-cell stage, the embryos showed a remarkable improvement in viability, much greater than expected from the sum of their parts."


Despite the successful cloning of sheep, pigs, cats and most recently rats, mammalian cloning -- in which an ordinary cell’s nucleus is transferred to an egg whose nucleus has been removed -- remains remarkably inefficient. Of every 100 cloned mice, roughly one survives to birth.

The researchers found that when the clone hybrids were transferred back into the uteri of recipient mice, the survival rate jumped to 8 percent. The researchers even produced a litter of four cloned mouse pups, in stark contrast to the typical single pup born.

Cloning requires the precise genetic reprogramming of the nucleus inserted into an enucleated egg. This nucleus must abandon its former genetic program and adopt the genetic profile of an embryonic nucleus; failure to do so dooms the embryo.

"The paper provides a new insight into reprogramming following nuclear transfer," said Davor Solter, a developmental biologist at the Max-Planck Institute of Immunobiology who was not involved in this work. "It confirms indirectly that every cloned embryo is actually different and that reprogramming is random. It seems that two embryos which are epigenetically different can positively interact and complement each other leading to correct temporal and spatial gene expression. That this type of interaction can take place was not obvious and it could only be demonstrated by the described approach."

McLaughlin and his colleagues aren’t yet sure why the aggregation of cloned embryos boosts survival, although one theory is that the combination of two embryos helps compensate for genetic deficiencies in either.

"The genetic reprogramming of a cloned embryo never seems to occur with 100 percent accuracy," he said. "However, the group of genes that fails to reset properly differs in each individual embryo, meaning that each embryo that contributes to an aggregate can help mask the shortcomings of the other. By combining cloned embryos, you might end up with an embryo that’s 99 percent reprogrammed rather than just 90 percent."

When McLaughlin and colleagues cut wild-type mouse embryos in half, they found that the expression of key developmental genes was not affected, suggesting that the developmental deficiencies of cloned embryos are not due to low cell counts alone. They speculate that cells in a blastocyst may communicate in a way that is compromised in a smaller cloned embryo.

McLaughlin’s co-authors on the EMBO Journal paper include Michele Boiani, Sigrid Eckardt, N. Adrian Leu and Hans R. Schöler, all of Penn’s Center for Animal Transgenesis and Germ Cell Research. Their work was funded by the Marion Dilley and David George Jones Funds, the Commonwealth and General Assembly of Pennsylvania, the National Institutes of Health, the University of Pennsylvania Research Foundation and the United States Department of Agriculture.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>