Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turkey genome research may help producers breed a better turkey

02.10.2003


To the average person, the turkey genome may seem to be a lot of "gobbledygook." But a just-published study in the journal, Genome, will help to ensure that the turkey that we "gobble down" at our Thanksgiving feasts will be a bird that is truly best of breed.



For the first time, researchers from the University of Minnesota and Nicholas Turkey Breeding Farms in California have collaborated to produce the first genome map, or genetic blueprint, of the domestic turkey (Meleagris gallopavo).

In order to decode the genome, researchers first had to collect and separate the DNA. They then applied chemical processes to the samples to enable them to identify the sequences, or ordering, of the building blocks of the DNA. These building blocks are the four different kinds of bases (adenine, thymine, cytosine, and guanine) that "spell" out the genetic code within the DNA of each species.


To date, a number of studies have succeeded at mapping the chicken genome, but the turkey remained one of the few domestic food animals for which a genome map was not available.

These maps are essential for applying results from genomics projects in model organisms, humans and other agricultural species. The study entitled "A first-generation map of the turkey genome" that is being published in Genome, a journal of the NRC Research Press, will leverage information from the chicken genome so that it can be more efficiently used to breed a better turkey.

Research into the genetic mapping of domestic animals is aimed at identifying specific genetic sequences that could affect traits of economic importance, such as efficient production, increased reproduction or disease resistance.

Dr. David Harry explains, "Finding a way to breed a turkey with naturally occurring beneficial traits is clearly of interest to the poultry-producing industry. Using naturally occurring variations, it is possible build a better turkey – for example one that expresses a natural genetic resistance to certain diseases. This will enable producers to minimize the cost and potential risks of preventive medications required to safely produce the animals that are being bred for human consumption."



Genome is published by the NRC Research Press, which is the publishing arm of the Canada Institute for Scientific and Technical Information (CISTI), an Institute of the National Research Council Canada (NRC).

The full article can be accessed online at: http://pubs.nrc.gc.ca/cgi-bin/rp/rp2_tocs_e?gen_gen5-03_46

For more information, please contact:

Dr. David E. Harry
Genetic Foundations
P.O. Box 3897
Napa, CA 94558
Tel: (707) 287-7890
Fax: (707) 257-8326
E-mail: deharry@ix.netcom.com

Peter Moens
Department of Biology
York University
4700 Keele St.
North York ON M3J 1P3
Tel: (416) 736-5358
Fax: (416) 736-5731
E-mail: genome@yorku.ca

References

David E. Harry, David Zaitlin, Paul J. Marini, and Kent M. Reed. 2003 A first-generation map of the turkey genome. Genome, 46(5): 879-889.

Dr. David E. Harry | EurekAlert!
Further information:
http://pubs.nrc.gc.ca/cgi-bin/rp/rp2_tocs_e?gen_gen5-03_46

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>