Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turkey genome research may help producers breed a better turkey

02.10.2003


To the average person, the turkey genome may seem to be a lot of "gobbledygook." But a just-published study in the journal, Genome, will help to ensure that the turkey that we "gobble down" at our Thanksgiving feasts will be a bird that is truly best of breed.



For the first time, researchers from the University of Minnesota and Nicholas Turkey Breeding Farms in California have collaborated to produce the first genome map, or genetic blueprint, of the domestic turkey (Meleagris gallopavo).

In order to decode the genome, researchers first had to collect and separate the DNA. They then applied chemical processes to the samples to enable them to identify the sequences, or ordering, of the building blocks of the DNA. These building blocks are the four different kinds of bases (adenine, thymine, cytosine, and guanine) that "spell" out the genetic code within the DNA of each species.


To date, a number of studies have succeeded at mapping the chicken genome, but the turkey remained one of the few domestic food animals for which a genome map was not available.

These maps are essential for applying results from genomics projects in model organisms, humans and other agricultural species. The study entitled "A first-generation map of the turkey genome" that is being published in Genome, a journal of the NRC Research Press, will leverage information from the chicken genome so that it can be more efficiently used to breed a better turkey.

Research into the genetic mapping of domestic animals is aimed at identifying specific genetic sequences that could affect traits of economic importance, such as efficient production, increased reproduction or disease resistance.

Dr. David Harry explains, "Finding a way to breed a turkey with naturally occurring beneficial traits is clearly of interest to the poultry-producing industry. Using naturally occurring variations, it is possible build a better turkey – for example one that expresses a natural genetic resistance to certain diseases. This will enable producers to minimize the cost and potential risks of preventive medications required to safely produce the animals that are being bred for human consumption."



Genome is published by the NRC Research Press, which is the publishing arm of the Canada Institute for Scientific and Technical Information (CISTI), an Institute of the National Research Council Canada (NRC).

The full article can be accessed online at: http://pubs.nrc.gc.ca/cgi-bin/rp/rp2_tocs_e?gen_gen5-03_46

For more information, please contact:

Dr. David E. Harry
Genetic Foundations
P.O. Box 3897
Napa, CA 94558
Tel: (707) 287-7890
Fax: (707) 257-8326
E-mail: deharry@ix.netcom.com

Peter Moens
Department of Biology
York University
4700 Keele St.
North York ON M3J 1P3
Tel: (416) 736-5358
Fax: (416) 736-5731
E-mail: genome@yorku.ca

References

David E. Harry, David Zaitlin, Paul J. Marini, and Kent M. Reed. 2003 A first-generation map of the turkey genome. Genome, 46(5): 879-889.

Dr. David E. Harry | EurekAlert!
Further information:
http://pubs.nrc.gc.ca/cgi-bin/rp/rp2_tocs_e?gen_gen5-03_46

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>