Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovering what genes do the high-throughput way


Researchers at the Howard Hughes Medical Institute in Boston have developed a fast and systematic method that could make it easier to understand how cells from complex animals work. Their results, published this week in Journal of Biology, should inspire scientists to perform comprehensive screens of the fruit fly genome to find molecules that control a variety of cellular processes.

The research team, led by Norbert Perrimon, systematically inhibited the function of around 1,000 Drosophila genes that are predicted to affect diverse cellular processes. They observed that 16% of the inhibited genes altered the form or structure of the cells in some way.

Genes that caused the same changes in the cells when inhibited are likely to work together in a complex or pathway. Clustering genes by their effects allowed the researchers to assign functions to about 50 previously uncharacterised genes. Author Buzz Baum says, "The most exciting thing for me is that now you can take a step back and look at the bigger picture. You can find out which genes act together to do something, so you begin to build up a system-wide understanding of how cells work. Genes work in a community to do something, not on their own. With big-scale experiments you can start to see the internal logic of the cell."

The screening method makes use of RNA interference (RNAi) - introducing double stranded RNA into cells, to interfere with the expression of specific genes. In order to scale up the procedure, which normally tests one gene at a time, the researchers plated out cells into 384-well dishes and then added double stranded RNA to each well. After three days, when the targeted gene should be inhibited, they stained the cells so that they could visualise both DNA and components of the cytoskeleton. They then photographed the cells using an automated microscope.

Two postdoctoral researchers, Baum and Amy Kiger, independently studied the thousands of photographs generated by the screen to characterize the effects of the RNAi treatment on the cells. They created a formal set of criteria to judge the cells consisting of seven classes of change that could have been induced. These included changes to cell number, shape, size and viability. Any changes were only considered significant if both scientists recorded them in replica experiments.

The researchers were also keen to find out if their method could be used to screen for genes that worked in, or inhibited specific molecular pathways. Screens in whole flies for genes that modify the effect of a particular genetic mutation have proved powerful, though time consuming. By adding two sets of double stranded RNA to each well, one that targeted the tumor suppressor gene pten and the other the gene to be tested, the researchers found that they were able to identify genes that modified the effects of inhibiting pten in cells. "These results demonstrate that modifier screens, as previously done in vivo, can be extended to RNAi screening methodology in cell culture", write the researchers.

Drug companies are becoming interested in this technique, as the rate-limiting step in cell-based drug discovery is finding out which protein is inhibited by a particular drug. Using Perrimon’s method they can screen to see which gene, when inhibited, changes the cell in the same way as adding the drug.

"RNAi screens can complement classical Drosophila genetics to assign functions to both known and novel genes," write the researchers. "The same technology can be easily adapted to a wide variety of cell-based studies and a greater genomic scale."

Baum says, "The major difference between this and whole fly screens is that here we can be systematic. We can choose to look at any cell biological process and systematically test the set of genes that could be involved. In the future we will be able to screen the full genome in a few weeks, and look at any cell biological phenomenon."

This press release is based on the following article:

A functional genomic analysis of cell morphology using RNA interference
A A Kiger, B Baum, S Jones, M R Jones, A Coulson, C Echeverri, N Perrimon
Journal of Biology 2:27
Published 1 October 2003

Gemma Bradley | BioMed Central
Further information:,

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>