Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovering what genes do the high-throughput way


Researchers at the Howard Hughes Medical Institute in Boston have developed a fast and systematic method that could make it easier to understand how cells from complex animals work. Their results, published this week in Journal of Biology, should inspire scientists to perform comprehensive screens of the fruit fly genome to find molecules that control a variety of cellular processes.

The research team, led by Norbert Perrimon, systematically inhibited the function of around 1,000 Drosophila genes that are predicted to affect diverse cellular processes. They observed that 16% of the inhibited genes altered the form or structure of the cells in some way.

Genes that caused the same changes in the cells when inhibited are likely to work together in a complex or pathway. Clustering genes by their effects allowed the researchers to assign functions to about 50 previously uncharacterised genes. Author Buzz Baum says, "The most exciting thing for me is that now you can take a step back and look at the bigger picture. You can find out which genes act together to do something, so you begin to build up a system-wide understanding of how cells work. Genes work in a community to do something, not on their own. With big-scale experiments you can start to see the internal logic of the cell."

The screening method makes use of RNA interference (RNAi) - introducing double stranded RNA into cells, to interfere with the expression of specific genes. In order to scale up the procedure, which normally tests one gene at a time, the researchers plated out cells into 384-well dishes and then added double stranded RNA to each well. After three days, when the targeted gene should be inhibited, they stained the cells so that they could visualise both DNA and components of the cytoskeleton. They then photographed the cells using an automated microscope.

Two postdoctoral researchers, Baum and Amy Kiger, independently studied the thousands of photographs generated by the screen to characterize the effects of the RNAi treatment on the cells. They created a formal set of criteria to judge the cells consisting of seven classes of change that could have been induced. These included changes to cell number, shape, size and viability. Any changes were only considered significant if both scientists recorded them in replica experiments.

The researchers were also keen to find out if their method could be used to screen for genes that worked in, or inhibited specific molecular pathways. Screens in whole flies for genes that modify the effect of a particular genetic mutation have proved powerful, though time consuming. By adding two sets of double stranded RNA to each well, one that targeted the tumor suppressor gene pten and the other the gene to be tested, the researchers found that they were able to identify genes that modified the effects of inhibiting pten in cells. "These results demonstrate that modifier screens, as previously done in vivo, can be extended to RNAi screening methodology in cell culture", write the researchers.

Drug companies are becoming interested in this technique, as the rate-limiting step in cell-based drug discovery is finding out which protein is inhibited by a particular drug. Using Perrimon’s method they can screen to see which gene, when inhibited, changes the cell in the same way as adding the drug.

"RNAi screens can complement classical Drosophila genetics to assign functions to both known and novel genes," write the researchers. "The same technology can be easily adapted to a wide variety of cell-based studies and a greater genomic scale."

Baum says, "The major difference between this and whole fly screens is that here we can be systematic. We can choose to look at any cell biological process and systematically test the set of genes that could be involved. In the future we will be able to screen the full genome in a few weeks, and look at any cell biological phenomenon."

This press release is based on the following article:

A functional genomic analysis of cell morphology using RNA interference
A A Kiger, B Baum, S Jones, M R Jones, A Coulson, C Echeverri, N Perrimon
Journal of Biology 2:27
Published 1 October 2003

Gemma Bradley | BioMed Central
Further information:,

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>