Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-human Molecule Is Absorbed by Eating Red Meat According to Study by UCSD Researchers

30.09.2003


A non-human, cellular molecule is absorbed into human tissues as a result of eating red meat and milk products, according to a study by researchers at the University of California, San Diego (UCSD) School of Medicine, published online the week of September 29, 2003 in Proceedings of the National Academy of Sciences. The researchers also showed that the same foreign molecule generates an immune response that could potentially lead to inflammation in human tissues.

Several previous studies have linked ingestion of red meat to cancer and heart disease, and possibly to some disorders involving inflammation. However, that research has primarily focused on the role of red-meat saturated fats and on products that arise from cooking. The UCSD study is the first to investigate human dietary absorption of a cell-surface molecular sugar called N-glycolylneuraminic acid (Neu5Gc), which is found in non-human mammals. Not produced in humans, Neu5Gc occurs naturally in lamb, pork and beef, the so-called “red meats”. Levels are very low or undetectable in fruits, vegetables, hen’s eggs, poultry and fish.

Conducting laboratory studies with human tissue, followed by tests in three adult subjects, the UCSD team provided the first proof that people who ingest Neu5Gc absorb some of it into their tissues. In addition, they demonstrated that many humans generate an immune response against the molecule, which the body sees as a foreign invader.



The study’s senior author, Ajit Varki, M.D., UCSD professor of medicine and cellular and molecular medicine, and co-director of the UCSD Glycobiology Research and Training Center, said that although it is unlikely that the ingestion of Neu5Gc alone would be primarily responsible for any specific disease, “it is conceivable that gradual Neu5Gc incorporation into the cells of the body over a lifetime, with subsequent binding of the circulating antibodies against Neu5Gc (the immune response), could contribute to the inflammatory processes involved in various diseases.”

He added that another potential medical barrier related to Neu5Gc might occur in organ transplantation.

“Over the past decade, the number of patients waiting for organ transplantation has more than tripled, with little increase in the number of donor organs. This has led to an exploration of using animal organs for transplantation into humans, a process called xenotransplantation,” Varki said. “However, the leading donor candidate is the pig, an animal in which Neu5Gc happens to be very common. The current study raises the possibility that human antibodies against Neu5Gc might recognize the Neu5Gc in the pig organ and facilitate its rejection.”

In describing the research approach taken by his team, Varki explained that humans do not produce Neu5Gc because they lack the gene responsible for its production.** And yet, other researchers have reported small amounts of Neu5Gc in human cancer tissues.

To verify the existence of Neu5Gc in human cancers, Varki’s collaborator, Elaine Muchmore, M.D., UCSD professor of medicine and associate chief of staff for education at the San Diego VA Healthcare System, developed an antibody that would be attracted by, and bind to Neu5Gc on tissue samples. The antibody was purified by Pam Tangvoranuntakul, B.S., the study’s first author and a Ph.D. student in Varki’s lab.

Working with Nissi Varki, M.D., UCSD professor of pathology and medicine, Tangvoranuntakul found that the antibody stained not only human cancers, but also some healthy human tissues. They found that small amounts of Neu5Gc were present in blood vessels and secretory cells, such as the mucous membranes. A further chemical analysis by Sandra Diaz, a Varki research associate, confirmed the presence of Neu5Gc in human tissue.

Meanwhile, an analysis of healthy human tissue by postdoctoral fellow Pascal Gagneux, Ph.D., and Tangvoranuntakul determined that most people had circulating antibodies in the blood that recognized Neu5Gc, and thus could potentially initiate an inflammatory immune response.

In the absence of any known molecular mechanism that would produce Neu5Gc in humans, the group reasoned that the small amounts of Neu5Gc found in human tissue could arise from human ingestion of Neu5Gc in dietary sources. Postdoctoral fellow Muriel Bardor, Ph.D., showed that when human cells in culture were exposed to Neu5Gc, they easily absorbed and incorporated it onto their own surfaces.

However, to study the possibility of dietary absorption, it was necessary to carry out an ingestion study in healthy people. Because the researchers were hesitant to give a potentially harmful substance to humans, Ajit Varki volunteered to be the first subject, followed by Muchmore and Gagneux.

When the three volunteers drank Neu5Gc purified from pork sources and dissolved in water, there were no immediate ill effects. An analysis of the volunteers’ urine, blood, serum (the clear liquid that can be separated from clotted blood), hair and saliva, both before ingestion and regularly for several days after, determined that the human body eliminates most of the Neu5Gc, but retains and metabolically absorbs small amounts of the foreign sugar. At approximately two days following ingestion, the Neu5Gc levels were two to three times the baseline level prior to ingestion. By four to eight days following ingestion, the levels had dropped nearly to baseline.

The authors cautioned that a causal relationship between Neu5Gc expression in human tissues with any human disease would be premature and scientifically speculative at best. Instead, they said their findings point to the need for population-level analyses of the presence of Neu5Gc in human tissues in relationship to disease incidence, and the mechanisms of human incorporation and antibody response against this sugar.

The study was supported by grants to Varki from the National Institutes of Health (NIH) and the G. Harold and Leila Y. Mathers Charitable Foundation. Some human studies were done in the UCSD General Clinical Research Center, which is also supported by the NIH.

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_29_Varki.html

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>